Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(12): 2057-2070.e15, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35688133

RESUMEN

Spinal muscular atrophy (SMA) is a motor-neuron disease caused by mutations of the SMN1 gene. The human paralog SMN2, whose exon 7 (E7) is predominantly skipped, cannot compensate for the lack of SMN1. Nusinersen is an antisense oligonucleotide (ASO) that upregulates E7 inclusion and SMN protein levels by displacing the splicing repressors hnRNPA1/A2 from their target site in intron 7. We show that by promoting transcriptional elongation, the histone deacetylase inhibitor VPA cooperates with a nusinersen-like ASO to promote E7 inclusion. Surprisingly, the ASO promotes the deployment of the silencing histone mark H3K9me2 on the SMN2 gene, creating a roadblock to RNA polymerase II elongation that inhibits E7 inclusion. By removing the roadblock, VPA counteracts the chromatin effects of the ASO, resulting in higher E7 inclusion without large pleiotropic effects. Combined administration of the nusinersen-like ASO and VPA in SMA mice strongly synergizes SMN expression, growth, survival, and neuromuscular function.


Asunto(s)
Atrofia Muscular Espinal , Oligonucleótidos Antisentido , Animales , Cromatina , Exones , Ratones , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Empalme del ARN
2.
Nat Rev Mol Cell Biol ; 23(6): 389-406, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35079163

RESUMEN

Mammalian genomes express two principal gene categories through RNA polymerase II-mediated transcription: protein-coding transcription units and non-coding RNA transcription units. Non-coding RNAs are further divided into relatively abundant structural RNAs, such as small nuclear RNAs, and into a myriad of long non-coding RNAs (lncRNAs) of often low abundance and low stability. Although at least some lncRNA synthesis may reflect transcriptional 'noise', recent studies define unique functions for either specific lncRNAs or for the process of lncRNA synthesis. Notably, the transcription, processing and metabolism of lncRNAs are regulated differently from protein-coding genes. In this Review, we provide insight into the regulation of lncRNA transcription and processing gleaned from the application of recently devised nascent transcriptomics technology. We first compare and contrast different methodologies for studying nascent transcription. We then discuss the molecular mechanisms regulating lncRNA transcription, especially transcription initiation and termination, which emphasize fundamental differences in their expression as compared with protein-coding genes. When perturbed, lncRNA misregulation leads to genomic stress such as transcription-replication conflict and R-loop-mediated DNA damage. We discuss many unresolved but important questions about the synthesis and potential functions of lncRNAs.


Asunto(s)
ARN Largo no Codificante , Animales , Mamíferos/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transcriptoma/genética
4.
Mol Cell ; 81(9): 1935-1950.e6, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33735606

RESUMEN

Mammalian chromatin is the site of both RNA polymerase II (Pol II) transcription and coupled RNA processing. However, molecular details of such co-transcriptional mechanisms remain obscure, partly because of technical limitations in purifying authentic nascent transcripts. We present a new approach to characterize nascent RNA, called polymerase intact nascent transcript (POINT) technology. This three-pronged methodology maps nascent RNA 5' ends (POINT-5), establishes the kinetics of co-transcriptional splicing patterns (POINT-nano), and profiles whole transcription units (POINT-seq). In particular, we show by depletion of the nuclear exonuclease Xrn2 that this activity acts selectively on cleaved 5' P-RNA at polyadenylation sites. Furthermore, POINT-nano reveals that co-transcriptional splicing either occurs immediately after splice site transcription or is delayed until Pol II transcribes downstream sequences. Finally, we connect RNA cleavage and splicing with either premature or full-length transcript termination. We anticipate that POINT technology will afford full dissection of the complexity of co-transcriptional RNA processing.


Asunto(s)
Nanotecnología , ARN Polimerasa II/metabolismo , Precursores del ARN/biosíntesis , Empalme del ARN , ARN Mensajero/biosíntesis , RNA-Seq , Transcripción Genética , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Células HCT116 , Células HeLa , Humanos , Cinética , Poliadenilación , Caperuzas de ARN , ARN Polimerasa II/genética , Precursores del ARN/genética , ARN Mensajero/genética
5.
Mol Cell ; 76(4): 600-616.e6, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31679819

RESUMEN

Widespread antisense long noncoding RNA (lncRNA) overlap with many protein-coding genes in mammals and emanate from gene promoter, enhancer, and termination regions. However, their origin and biological purpose remain unclear. We show that these antisense lncRNA can be generated by R-loops that form when nascent transcript invades the DNA duplex behind elongating RNA polymerase II (Pol II). Biochemically, R-loops act as intrinsic Pol II promoters to induce de novo RNA synthesis. Furthermore, their removal across the human genome by RNase H1 overexpression causes the selective reduction of antisense transcription. Consequently, we predict that R-loops act to facilitate the synthesis of many gene proximal antisense lncRNA. Not only are R-loops widely associated with DNA damage and repair, but we now show that they have the capacity to promote de novo transcript synthesis that may have aided the evolution of gene regulation.


Asunto(s)
Genoma Humano , Regiones Promotoras Genéticas , Estructuras R-Loop , ARN sin Sentido/biosíntesis , ARN Largo no Codificante/biosíntesis , Transcripción Genética , Activación Transcripcional , Células HEK293 , Células HeLa , Humanos , ARN sin Sentido/genética , ARN Largo no Codificante/genética , Ribonucleasa H/metabolismo , Relación Estructura-Actividad
6.
Mol Cell ; 74(1): 158-172.e9, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30819644

RESUMEN

The pervasive nature of RNA polymerase II (Pol II) transcription requires efficient termination. A key player in this process is the cleavage and polyadenylation (CPA) factor PCF11, which directly binds to the Pol II C-terminal domain and dismantles elongating Pol II from DNA in vitro. We demonstrate that PCF11-mediated termination is essential for vertebrate development. A range of genomic analyses, including mNET-seq, 3' mRNA-seq, chromatin RNA-seq, and ChIP-seq, reveals that PCF11 enhances transcription termination and stimulates early polyadenylation genome-wide. PCF11 binds preferentially between closely spaced genes, where it prevents transcriptional interference and consequent gene downregulation. Notably, PCF11 is sub-stoichiometric to the CPA complex. Low levels of PCF11 are maintained by an auto-regulatory mechanism involving premature termination of its own transcript and are important for normal development. Both in human cell culture and during zebrafish development, PCF11 selectively attenuates the expression of other transcriptional regulators by premature CPA and termination.


Asunto(s)
ARN Mensajero/biosíntesis , Terminación de la Transcripción Genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Animales , Animales Modificados Genéticamente , Sitios de Unión , Regulación del Desarrollo de la Expresión Génica , Células HeLa , Humanos , Mutación , Poliadenilación , Unión Proteica , División del ARN , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Factores de Escisión y Poliadenilación de ARNm/genética
7.
Mol Cell ; 72(6): 970-984.e7, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30449723

RESUMEN

Extensive tracts of the mammalian genome that lack protein-coding function are still transcribed into long noncoding RNA. While these lncRNAs are generally short lived, length restricted, and non-polyadenylated, how their expression is distinguished from protein-coding genes remains enigmatic. Surprisingly, depletion of the ubiquitous Pol-II-associated transcription elongation factor SPT6 promotes a redistribution of H3K36me3 histone marks from active protein coding to lncRNA genes, which correlates with increased lncRNA transcription. SPT6 knockdown also impairs the recruitment of the Integrator complex to chromatin, which results in a transcriptional termination defect for lncRNA genes. This leads to the formation of extended, polyadenylated lncRNAs that are both chromatin restricted and form increased levels of RNA:DNA hybrid (R-loops) that are associated with DNA damage. Additionally, these deregulated lncRNAs overlap with DNA replication origins leading to localized DNA replication stress and a cellular senescence phenotype. Overall, our results underline the importance of restricting lncRNA expression.


Asunto(s)
Proliferación Celular , Senescencia Celular , Daño del ADN , Replicación del ADN , ADN de Neoplasias/biosíntesis , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Factores de Transcripción/metabolismo , Neoplasias Uterinas/metabolismo , Animales , Ensamble y Desensamble de Cromatina , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , ADN de Neoplasias/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HeLa , Histonas/metabolismo , Humanos , Metilación , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/genética , Ácidos Nucleicos Heterodúplex/metabolismo , Estabilidad del ARN , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética , Factores de Transcripción/genética , Transcripción Genética , Neoplasias Uterinas/genética
8.
Genes Dev ; 37(1-2): 43-44, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37061985
9.
Mol Cell ; 65(1): 25-38, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28017589

RESUMEN

Numerous long intervening noncoding RNAs (lincRNAs) are generated from the mammalian genome by RNA polymerase II (Pol II) transcription. Although multiple functions have been ascribed to lincRNAs, their synthesis and turnover remain poorly characterized. Here, we define systematic differences in transcription and RNA processing between protein-coding and lincRNA genes in human HeLa cells. This is based on a range of nascent transcriptomic approaches applied to different nuclear fractions, including mammalian native elongating transcript sequencing (mNET-seq). Notably, mNET-seq patterns specific for different Pol II CTD phosphorylation states reveal weak co-transcriptional splicing and poly(A) signal-independent Pol II termination of lincRNAs as compared to pre-mRNAs. In addition, lincRNAs are mostly restricted to chromatin, since they are rapidly degraded by the RNA exosome. We also show that a lincRNA-specific co-transcriptional RNA cleavage mechanism acts to induce premature termination. In effect, functional lincRNAs must escape from this targeted nuclear surveillance process.


Asunto(s)
Núcleo Celular/metabolismo , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Transcripción Genética , Biología Computacional , Bases de Datos Genéticas , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Células HeLa , Humanos , Fosforilación , Poliadenilación , Interferencia de ARN , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , Empalme del ARN , Estabilidad del ARN , ARN Largo no Codificante/genética , ARN Mensajero/genética , Transfección
10.
Genes Dev ; 31(21): 2175-2185, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29196535

RESUMEN

Nuclear gene transcription is coordinated with transcript release from the chromatin template and messenger RNA (mRNA) export to the cytoplasm. Here we describe the role of nuclear-localized kinase WNK1 (with no lysine [K] 1) in the mammalian mRNA export pathway even though it was previously established as a critical regulator of ion homeostasis in the cytoplasm. Our data reveal that WNK1 phosphorylates the termination factor PCF11 on its RNA polymerase II (Pol II) C-terminal domain (CTD)-interacting domain (CID). Furthermore, phosphorylation of the PCF11 CID weakens its interaction with Pol II. We predict that WNK1 and the associated phosphorylation of the PCF11 CID act to promote transcript release from chromatin-associated Pol II. This in turn facilitates mRNA export to the cytoplasm.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , ARN Mensajero/metabolismo , Transcripción Genética , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Núcleo Celular/enzimología , Núcleo Celular/metabolismo , Cromatina/metabolismo , Citoplasma/metabolismo , Células HeLa , Humanos , Fosforilación , Dominios Proteicos , Interferencia de ARN , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Factores de Escisión y Poliadenilación de ARNm/genética
11.
Cell ; 136(4): 688-700, 2009 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-19239889

RESUMEN

The pathway from gene activation in the nucleus to mRNA translation and decay at specific locations in the cytoplasm is both streamlined and highly interconnected. This review discusses how pre-mRNA processing, including 5' cap addition, splicing, and polyadenylation, contributes to both the efficiency and fidelity of gene expression. The connections of pre-mRNA processing to upstream events in transcription and downstream events, including translation and mRNA decay, are elaborate, extensive, and remarkably interwoven.


Asunto(s)
Regulación de la Expresión Génica , Biosíntesis de Proteínas , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , Transcripción Genética , Animales , Retroalimentación , Humanos , Estabilidad del ARN
12.
Cell ; 132(6): 983-95, 2008 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-18358811

RESUMEN

Transcription analyses reported in these studies reveal that convergent genes in S. pombe generate overlapping transcripts in the G1 phase of the cell cycle. We show that this double-strand (ds) RNA induces localized RNAi (Dicer and RITS) dependent transient heterochromatin structures including histone H3 lysine 9 trimethylation marks and Swi6 association. Consequently cohesin is recruited to these chromosomal positions through interaction with Swi6. In G2, localized cohesin is further concentrated into the intergenic regions of the convergent genes tested. This results in a block to further dsRNA formation by promoting gene-proximal transcription termination between the convergent genes. Cohesin release at mitosis leads to a new G1 phase with repeated dsRNA formation, transient heterochromatin, and cohesin recruitment. Our results uncover a hitherto unanticipated role for cohesin and further suggest a widespread role for the selective formation of dsRNA, heterochromatin, and subsequent cohesin recruitment in regulated transcriptional termination.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Transcripción Genética , Codón de Terminación , Fase G1 , Fase G2 , Heterocromatina , Mitosis , Interferencia de ARN , ARN Bicatenario/metabolismo , ARN Mensajero , Schizosaccharomyces/citología , Cohesinas
13.
Cell ; 135(2): 207-8, 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-18957194

RESUMEN

The THO complex and Sub2 RNA helicase have been shown to function in both transcription and mRNA processing. Rougemaille et al. (2008) now uncover evidence that THO/Sub2 coordinates mRNA processing and nuclear export.


Asunto(s)
Transporte Activo de Núcleo Celular , Poro Nuclear/metabolismo , Transporte de ARN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ARN de Hongos/metabolismo
14.
Genes Dev ; 29(8): 849-61, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25877920

RESUMEN

In Saccharomyces cerevisiae, short noncoding RNA (ncRNA) generated by RNA polymerase II (Pol II) are terminated by the NRD complex consisting of Nrd1, Nab3, and Sen1. We now show that Pcf11, a component of the cleavage and polyadenylation complex (CPAC), is also generally required for NRD-dependent transcription termination through the action of its C-terminal domain (CTD)-interacting domain (CID). Pcf11 localizes downstream from Nrd1 on NRD terminators, and its recruitment depends on Nrd1. Furthermore, mutation of the Pcf11 CID results in Nrd1 retention on chromatin, delayed degradation of ncRNA, and restricted Pol II CTD Ser2 phosphorylation and Sen1-Pol II interaction. Finally, the pcf11-13 and sen1-1 mutant phenotypes are very similar, as both accumulate RNA:DNA hybrids and display Pol II pausing downstream from NRD terminators. We predict a mechanism by which the exchange of Nrd1 and Pcf11 on chromatin facilitates Pol II pausing and CTD Ser2-P phosphorylation. This in turn promotes Sen1 activity that is required for NRD-dependent transcription termination in vivo.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Terminación de la Transcripción Genética/fisiología , Factores de Escisión y Poliadenilación de ARNm/metabolismo , ADN Helicasas/genética , Estructura Terciaria de Proteína , ARN Helicasas/genética , ARN no Traducido/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Escisión y Poliadenilación de ARNm/genética
15.
Trends Genet ; 35(8): 553-564, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31213387

RESUMEN

The concept of early termination as an important means of transcriptional control has long been established. Even so, its role in metazoan gene expression is underappreciated. Recent technological advances provide novel insights into premature transcription termination (PTT). This process is frequent, widespread, and can occur close to the transcription start site (TSS), or within the gene body. Stable prematurely terminated transcripts contribute to the transcriptome as instances of alternative polyadenylation (APA). Independently of transcript stability and function, premature termination opposes the formation of full-length transcripts, thereby negatively regulating gene expression, especially of transcriptional regulators. Premature termination can be beneficial or harmful, depending on its context. As a result, multiple factors have evolved to control this process.


Asunto(s)
Regulación de la Expresión Génica/genética , Terminación de la Transcripción Genética , Transcripción Genética , Transcriptoma , Animales , Bacterias/genética , Codón sin Sentido/genética , Exones/genética , Intrones/genética , Plantas/genética , Poliadenilación/genética , ARN Mensajero/genética , ARN no Traducido/genética , Sitio de Iniciación de la Transcripción , Levaduras/genética
16.
Mol Cell ; 41(1): 21-32, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21211720

RESUMEN

Sen1 of S. cerevisiae is a known component of the NRD complex implicated in transcription termination of nonpolyadenylated as well as some polyadenylated RNA polymerase II transcripts. We now show that Sen1 helicase possesses a wider function by restricting the occurrence of RNA:DNA hybrids that may naturally form during transcription, when nascent RNA hybridizes to DNA prior to its packaging into RNA protein complexes. These hybrids displace the nontranscribed strand and create R loop structures. Loss of Sen1 results in transient R loop accumulation and so elicits transcription-associated recombination. SEN1 genetically interacts with DNA repair genes, suggesting that R loop resolution requires proteins involved in homologous recombination. Based on these findings, we propose that R loop formation is a frequent event during transcription and a key function of Sen1 is to prevent their accumulation and associated genome instability.


Asunto(s)
ADN Helicasas/fisiología , Inestabilidad Genómica , ARN Helicasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Transcripción Genética , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN/genética , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Estructura Terciaria de Proteína , ARN Helicasas/genética , ARN Helicasas/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Genes Dev ; 25(17): 1770-82, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21896654

RESUMEN

Polyadenylation [poly(A)] signals (PAS) are a defining feature of eukaryotic protein-coding genes. The central sequence motif AAUAAA was identified in the mid-1970s and subsequently shown to require flanking, auxiliary elements for both 3'-end cleavage and polyadenylation of premessenger RNA (pre-mRNA) as well as to promote downstream transcriptional termination. More recent genomic analysis has established the generality of the PAS for eukaryotic mRNA. Evidence for the mechanism of mRNA 3'-end formation is outlined, as is the way this RNA processing reaction communicates with RNA polymerase II to terminate transcription. The widespread phenomenon of alternative poly(A) site usage and how this interrelates with pre-mRNA splicing is then reviewed. This shows that gene expression can be drastically affected by how the message is ended. A central theme of this review is that while genomic analysis provides generality for the importance of PAS selection, detailed mechanistic understanding still requires the direct analysis of specific genes by genetic and biochemical approaches.


Asunto(s)
Regulación de la Expresión Génica , Señales de Poliadenilación de ARN 3'/genética , Regiones no Traducidas 3'/genética , Animales , Humanos , Precursores del ARN/metabolismo , Empalme del ARN , ARN no Traducido/metabolismo
18.
Genes Dev ; 25(6): 556-68, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21357674

RESUMEN

RNAi plays a central role in the regulation of eukaryotic genes. In Schizosaccharomyces pombe fission yeast, RNAi involves the formation of siRNA from dsRNA that acts to establish and maintain heterochromatin over centromeres, telomeres, and mating loci. We showed previously that transient heterochromatin also forms over S. pombe convergent genes (CGs). Remarkably, most RNAi genes are themselves convergent. We demonstrate here that transient heterochromatin formed by the RNAi pathway over RNAi CGs leads to their autoregulation in G1-S. Furthermore, the switching of RNAi gene orientation from convergent to tandem causes loss of their G1-S down-regulation. Surprisingly, yeast mutants with tandemized dcr1, ago1, or clr4 genes display aberrant centromeric heterochromatin, which results in abnormal cell morphology. Our results emphasize the significance of gene orientation for correct RNAi gene expression, and suggest a role for cell cycle-dependent formation of RNAi CG heterochromatin in cellular integrity.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Orden Génico/genética , Interferencia de ARN , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ciclo Celular , Centrómero/metabolismo , Silenciador del Gen , Heterocromatina , Mutación , Fenotipo , Proteínas de Schizosaccharomyces pombe/metabolismo
19.
Trends Biochem Sci ; 39(7): 319-27, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24928762

RESUMEN

Bidirectional promoters are a common feature of many eukaryotic organisms from yeast to humans. RNA Polymerase II that is recruited to this type of promoter can start transcribing in either direction using alternative DNA strands as the template. Such promiscuous transcription can lead to the synthesis of unwanted transcripts that may have negative effects on gene expression. Recent studies have identified transcription termination and gene looping as critical players in the enforcement of promoter directionality. Interestingly, both mechanisms share key components. Here, we focus on recent findings relating to the transcriptional output of bidirectional promoters.


Asunto(s)
Regulación de la Expresión Génica , ARN Polimerasa II/genética , Procesamiento Postranscripcional del ARN , Terminación de la Transcripción Genética , Animales , Humanos , Regiones Promotoras Genéticas
20.
Mol Cell ; 36(1): 88-98, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19818712

RESUMEN

Transcription termination of RNA polymerase II (Pol II) on protein-coding genes in S. cerevisiae relies on pA site recognition by 3' end processing factors. Here we demonstrate the existence of two alternative termination mechanisms that rescue polymerases failing to disengage from the template at pA sites. One of these fail-safe mechanisms is mediated by the NRD complex, similar to termination of short noncoding genes. The other termination mechanism is mediated by Rnt1 cleavage of the nascent transcript. Both fail-safe termination mechanisms trigger degradation of readthrough transcripts by the exosome. However, Rnt1-mediated termination can also enhance the usage of weak pA signals and thereby generate functional mRNA. We propose that these alternative Pol II termination pathways serve the dual function of avoiding transcription interference and promoting rapid removal of aberrant transcripts.


Asunto(s)
ARN Polimerasa II/metabolismo , ARN Mensajero/biosíntesis , Ribonucleasa III/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Regiones Terminadoras Genéticas/fisiología , Transcripción Genética/fisiología , Región de Flanqueo 3'/fisiología , Aciltransferasas/genética , Sitios de Unión/genética , ADN/metabolismo , ADN Helicasas/genética , Exorribonucleasas/genética , Mutación/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación/fisiología , Plásmidos/genética , Plásmidos/metabolismo , Unión Proteica/fisiología , ARN Helicasas/genética , Estabilidad del ARN/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA