Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 36(7-8): 468-482, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35450884

RESUMEN

The nucleosome remodeling and deacetylase (NuRD) complex is one of the central chromatin remodeling complexes that mediates gene repression. NuRD is essential for numerous developmental events, including heart development. Clinical and genetic studies have provided direct evidence for the role of chromodomain helicase DNA-binding protein 4 (CHD4), the catalytic component of NuRD, in congenital heart disease (CHD), including atrial and ventricular septal defects. Furthermore, it has been demonstrated that CHD4 is essential for mammalian cardiomyocyte formation and function. A key unresolved question is how CHD4/NuRD is localized to specific cardiac target genes, as neither CHD4 nor NuRD can directly bind DNA. Here, we coupled a bioinformatics-based approach with mass spectrometry analyses to demonstrate that CHD4 interacts with the core cardiac transcription factors GATA4, NKX2-5, and TBX5 during embryonic heart development. Using transcriptomics and genome-wide occupancy data, we characterized the genomic landscape of GATA4, NKX2-5, and TBX5 repression and defined the direct cardiac gene targets of the GATA4-CHD4, NKX2-5-CHD4, and TBX5-CHD4 complexes. These data were used to identify putative cis-regulatory elements controlled by these complexes. We genetically interrogated two of these silencers in vivo: Acta1 and Myh11 We show that deletion of these silencers leads to inappropriate skeletal and smooth muscle gene misexpression, respectively, in the embryonic heart. These results delineate how CHD4/NuRD is localized to specific cardiac loci and explicates how mutations in the broadly expressed CHD4 protein lead to cardiac-specific disease states.


Asunto(s)
ADN Helicasas , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Animales , ADN Helicasas/metabolismo , Genes Homeobox , Mamíferos/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Miocitos Cardíacos/metabolismo , Nucleosomas , Factores de Transcripción/genética
2.
Circ Res ; 134(5): 529-546, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38348657

RESUMEN

BACKGROUND: Mature endothelial cells (ECs) are heterogeneous, with subtypes defined by tissue origin and position within the vascular bed (ie, artery, capillary, vein, and lymphatic). How this heterogeneity is established during the development of the vascular system, especially arteriovenous specification of ECs, remains incompletely characterized. METHODS: We used droplet-based single-cell RNA sequencing and multiplexed error-robust fluorescence in situ hybridization to define EC and EC progenitor subtypes from E9.5, E12.5, and E15.5 mouse embryos. We used trajectory inference to analyze the specification of arterial ECs (aECs) and venous ECs (vECs) from EC progenitors. Network analysis identified candidate transcriptional regulators of arteriovenous differentiation, which we tested by CRISPR (clustered regularly interspaced short palindromic repeats) loss of function in human-induced pluripotent stem cells undergoing directed differentiation to aECs or vECs (human-induced pluripotent stem cell-aECs or human-induced pluripotent stem cell-vECs). RESULTS: From the single-cell transcriptomes of 7682 E9.5 to E15.5 ECs, we identified 19 EC subtypes, including Etv2+Bnip3+ EC progenitors. Spatial transcriptomic analysis of 15 448 ECs provided orthogonal validation of these EC subtypes and established their spatial distribution. Most embryonic ECs were grouped by their vascular-bed types, while ECs from the brain, heart, liver, and lung were grouped by their tissue origins. Arterial (Eln, Dkk2, Vegfc, and Egfl8), venous (Fam174b and Clec14a), and capillary (Kcne3) marker genes were identified. Compared with aECs, embryonic vECs and capillary ECs shared fewer markers than their adult counterparts. Early capillary ECs with venous characteristics functioned as a branch point for differentiation of aEC and vEC lineages. CONCLUSIONS: Our results provide a spatiotemporal map of embryonic EC heterogeneity at single-cell resolution and demonstrate that the diversity of ECs in the embryo arises from both tissue origin and vascular-bed position. Developing aECs and vECs share common venous-featured capillary precursors and are regulated by distinct transcriptional regulatory networks.


Asunto(s)
Células Endoteliales , Canales de Potasio con Entrada de Voltaje , Adulto , Humanos , Animales , Ratones , Hibridación Fluorescente in Situ , Arterias , Encéfalo , Venas
3.
Circ Res ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864216

RESUMEN

BACKGROUND: Cardiac hypertrophy is an adaptive response to pressure overload aimed at maintaining cardiac function. However, prolonged hypertrophy significantly increases the risk of maladaptive cardiac remodeling and heart failure. Recent studies have implicated long noncoding RNAs in cardiac hypertrophy and cardiomyopathy, but their significance and mechanism(s) of action are not well understood. METHODS: We measured lincRNA-p21 RNA and H3K27ac levels in the hearts of dilated cardiomyopathy patients. We assessed the functional role of lincRNA-p21 in basal and surgical pressure-overload conditions using loss-of-function mice. Genome-wide transcriptome analysis revealed dysregulated genes and pathways. We labeled proteins in proximity to full-length lincRNA-p21 using a novel BioID2-based system. We immunoprecipitated lincRNA-p21-interacting proteins and performed cell fractionation, ChIP-seq (chromatin immunoprecipitation followed by sequencing), and co-immunoprecipitation to investigate molecular interactions and underlying mechanisms. We used GapmeR antisense oligonucleotides to evaluate the therapeutic potential of lincRNA-p21 inhibition in cardiac hypertrophy and associated heart failure. RESULTS: lincRNA-p21 was induced in mice and humans with cardiomyopathy. Global and cardiac-specific lincRNA-p21 knockout significantly suppressed pressure overload-induced ventricular wall thickening, stress marker elevation, and deterioration of cardiac function. Genome-wide transcriptome analysis and transcriptional network analysis revealed that lincRNA-p21 acts in trans to stimulate the NFAT/MEF2 pathway. Mechanistically, lincRNA-p21 is bound to the scaffold protein KAP1. lincRNA-p21 cardiac-specific knockout suppressed stress-induced nuclear accumulation of KAP1, and KAP1 knockdown attenuated cardiac hypertrophy and NFAT activation. KAP1 positively regulates pathological hypertrophy by physically interacting with NFATC4 to promote the overactive status of NFAT/MEF2 signaling. GapmeR antisense oligonucleotide depletion of lincRNA-p21 similarly inhibited cardiac hypertrophy and adverse remodeling, highlighting the therapeutic potential of inhibiting lincRNA-p21. CONCLUSIONS: These findings advance our understanding of the functional significance of stress-induced long noncoding RNA in cardiac hypertrophy and demonstrate the potential of lincRNA-p21 as a novel therapeutic target for cardiac hypertrophy and subsequent heart failure.

4.
Circulation ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752340

RESUMEN

BACKGROUND: Familial hypertrophic cardiomyopathy has severe clinical complications of heart failure, arrhythmia, and sudden cardiac death. Heterozygous single nucleotide variants (SNVs) of sarcomere genes such as MYH7 are the leading cause of this type of disease. CRISPR-Cas13 (clustered regularly interspaced short palindromic repeats and their associated protein 13) is an emerging gene therapy approach for treating genetic disorders, but its therapeutic potential in genetic cardiomyopathy remains unexplored. METHODS: We developed a sensitive allelic point mutation reporter system to screen the mutagenic variants of Cas13d. On the basis of Cas13d homology structure, we rationally designed a series of Cas13d variants and obtained a high-precision Cas13d variant (hpCas13d) that specifically cleaves the MYH7 variant RNAs containing 1 allelic SNV. We validated the high precision and low collateral cleavage activity of hpCas13d through various in vitro assays. We generated 2 HCM mouse models bearing distinct MYH7 SNVs and used adenovirus-associated virus serotype 9 to deliver hpCas13d specifically to the cardiomyocytes. We performed a large-scale library screening to assess the potency of hpCas13d in resolving 45 human MYH7 allelic pathogenic SNVs. RESULTS: Wild-type Cas13d cannot distinguish and specifically cleave the heterozygous MYH7 allele with SNV. hpCas13d, with 3 amino acid substitutions, had minimized collateral RNase activity and was able to resolve various human MYH7 pathological sequence variations that cause hypertrophic cardiomyopathy. In vivo application of hpCas13d to 2 hypertrophic cardiomyopathy models caused by distinct human MYH7 analogous sequence variations specifically suppressed the altered allele and prevented cardiac hypertrophy. CONCLUSIONS: Our study unveils the great potential of CRISPR-Cas nucleases with high precision in treating inheritable cardiomyopathy and opens a new avenue for therapeutic management of inherited cardiac diseases.

5.
Circulation ; 149(15): 1205-1230, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38189150

RESUMEN

BACKGROUND: The relationship between heart failure (HF) and atrial fibrillation (AF) is clear, with up to half of patients with HF progressing to AF. The pathophysiological basis of AF in the context of HF is presumed to result from atrial remodeling. Upregulation of the transcription factor FOG2 (friend of GATA2; encoded by ZFPM2) is observed in human ventricles during HF and causes HF in mice. METHODS: FOG2 expression was assessed in human atria. The effect of adult-specific FOG2 overexpression in the mouse heart was evaluated by whole animal electrophysiology, in vivo organ electrophysiology, cellular electrophysiology, calcium flux, mouse genetic interactions, gene expression, and genomic function, including a novel approach for defining functional transcription factor interactions based on overlapping effects on enhancer noncoding transcription. RESULTS: FOG2 is significantly upregulated in the human atria during HF. Adult cardiomyocyte-specific FOG2 overexpression in mice caused primary spontaneous AF before the development of HF or atrial remodeling. FOG2 overexpression generated arrhythmia substrate and trigger in cardiomyocytes, including calcium cycling defects. We found that FOG2 repressed atrial gene expression promoted by TBX5. FOG2 bound a subset of GATA4 and TBX5 co-bound genomic locations, defining a shared atrial gene regulatory network. FOG2 repressed TBX5-dependent transcription from a subset of co-bound enhancers, including a conserved enhancer at the Atp2a2 locus. Atrial rhythm abnormalities in mice caused by Tbx5 haploinsufficiency were rescued by Zfpm2 haploinsufficiency. CONCLUSIONS: Transcriptional changes in the atria observed in human HF directly antagonize the atrial rhythm gene regulatory network, providing a genomic link between HF and AF risk independent of atrial remodeling.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Insuficiencia Cardíaca , Humanos , Ratones , Animales , Fibrilación Atrial/genética , Redes Reguladoras de Genes , Calcio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Atrios Cardíacos , Insuficiencia Cardíaca/genética , Genómica , Factor de Transcripción GATA4/genética
6.
Hum Mol Genet ; 32(12): 2055-2067, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36917259

RESUMEN

Barth syndrome is an X-linked disorder caused by loss-of-function mutations in Tafazzin (TAZ), an acyltransferase that catalyzes remodeling of cardiolipin, a signature phospholipid of the inner mitochondrial membrane. Patients develop cardiac and skeletal muscle weakness, growth delay and neutropenia, although phenotypic expression varies considerably between patients. Taz knockout mice recapitulate many of the hallmark features of the disease. We used mouse genetics to test the hypothesis that genetic modifiers alter the phenotypic manifestations of Taz inactivation. We crossed TazKO/X females in the C57BL6/J inbred strain to males from eight inbred strains and evaluated the phenotypes of first-generation (F1) TazKO/Y progeny, compared to TazWT/Y littermates. We observed that genetic background strongly impacted phenotypic expression. C57BL6/J and CAST/EiJ[F1] TazKO/Y mice developed severe cardiomyopathy, whereas A/J[F1] TazKO/Y mice had normal heart function. C57BL6/J and WSB/EiJ[F1] TazKO/Y mice had severely reduced treadmill endurance, whereas endurance was normal in A/J[F1] and CAST/EiJ[F1] TazKO/Y mice. In all genetic backgrounds, cardiolipin showed similar abnormalities in knockout mice, and transcriptomic and metabolomic investigations identified signatures of mitochondrial uncoupling and activation of the integrated stress response. TazKO/Y cardiac mitochondria were small, clustered and had reduced cristae density in knockouts in severely affected genetic backgrounds but were relatively preserved in the permissive A/J[F1] strain. Gene expression and mitophagy measurements were consistent with reduced mitophagy in knockout mice in genetic backgrounds intolerant of Taz mutation. Our data demonstrate that genetic modifiers powerfully modulate phenotypic expression of Taz loss-of-function and act downstream of cardiolipin, possibly by altering mitochondrial quality control.


Asunto(s)
Síndrome de Barth , Masculino , Femenino , Animales , Ratones , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Factores de Transcripción/metabolismo , Modelos Animales de Enfermedad , Aciltransferasas/genética , Ratones Noqueados , Fenotipo
7.
Circulation ; 147(11): 881-896, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36705030

RESUMEN

BACKGROUND: Cardiac chamber-selective transcriptional programs underpin the structural and functional differences between atrial and ventricular cardiomyocytes (aCMs and vCMs). The mechanisms responsible for these chamber-selective transcriptional programs remain largely undefined. METHODS: We nominated candidate chamber-selective enhancers (CSEs) by determining the genome-wide occupancy of 7 key cardiac transcription factors (GATA4, MEF2A, MEF2C, NKX2-5, SRF, TBX5, TEAD1) and transcriptional coactivator P300 in atria and ventricles. Candidate enhancers were tested using an adeno-associated virus-mediated massively parallel reporter assay. Chromatin features of CSEs were evaluated by performing assay of transposase accessible chromatin sequencing and acetylation of histone H3 at lysine 27-HiChIP on aCMs and vCMs. CSE sequence requirements were determined by systematic tiling mutagenesis of 29 CSEs at 5 bp resolution. Estrogen-related receptor (ERR) function in cardiomyocytes was evaluated by Cre-loxP-mediated inactivation of ERRα and ERRγ in cardiomyocytes. RESULTS: We identified 134 066 and 97 506 regions reproducibly occupied by at least 1 transcription factor or P300, in atria or ventricles, respectively. Enhancer activities of 2639 regions bound by transcription factors or P300 were tested in aCMs and vCMs by adeno-associated virus-mediated massively parallel reporter assay. This identified 1092 active enhancers in aCMs or vCMs. Several overlapped loci associated with cardiovascular disease through genome-wide association studies, and 229 exhibited chamber-selective activity in aCMs or vCMs. Many CSEs exhibited differential chromatin accessibility between aCMs and vCMs, and CSEs were enriched for aCM- or vCM-selective acetylation of histone H3 at lysine 27-anchored loops. Tiling mutagenesis of 29 CSEs identified the binding motif of ERRα/γ as important for ventricular enhancer activity. The requirement of ERRα/γ to activate ventricular CSEs and promote vCM identity was confirmed by loss of the vCM gene profile in ERRα/γ knockout vCMs. CONCLUSIONS: We identified 229 CSEs that could be useful research tools or direct therapeutic gene expression. We showed that chamber-selective multi-transcription factor, P300 occupancy, open chromatin, and chromatin looping are predictive features of CSEs. We found that ERRα/γ are essential for maintenance of ventricular identity. Finally, our gene expression, epigenetic, 3-dimensional genome, and enhancer activity atlas provide key resources for future studies of chamber-selective gene regulation.


Asunto(s)
Histonas , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Histonas/genética , Histonas/metabolismo , Estudio de Asociación del Genoma Completo , Lisina/genética , Lisina/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Estrógenos
8.
Circulation ; 148(23): 1887-1906, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37905452

RESUMEN

BACKGROUND: The importance of mitochondria in normal heart function are well recognized and recent studies have implicated changes in mitochondrial metabolism with some forms of heart disease. Previous studies demonstrated that knockdown of the mitochondrial ribosomal protein S5 (MRPS5) by small interfering RNA (siRNA) inhibits mitochondrial translation and thereby causes a mitonuclear protein imbalance. Therefore, we decided to examine the effects of MRPS5 loss and the role of these processes on cardiomyocyte proliferation. METHODS: We deleted a single allele of MRPS5 in mice and used left anterior descending coronary artery ligation surgery to induce myocardial damage in these animals. We examined cardiomyocyte proliferation and cardiac regeneration both in vivo and in vitro. Doxycycline treatment was used to inhibit protein translation. Heart function in mice was assessed by echocardiography. Quantitative real-time polymerase chain reaction and RNA sequencing were used to assess changes in transcription and chromatin immunoprecipitation (ChIP) and BioChIP were used to assess chromatin effects. Protein levels were assessed by Western blotting and cell proliferation or death by histology and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays. Adeno-associated virus was used to overexpress genes. The luciferase reporter assay was used to assess promoter activity. Mitochondrial oxygen consumption rate, ATP levels, and reactive oxygen species were also analyzed. RESULTS: We determined that deletion of a single allele of MRPS5 in mice results in elevated cardiomyocyte proliferation and cardiac regeneration; this observation correlates with improved cardiac function after induction of myocardial infarction. We identified ATF4 (activating transcription factor 4) as a key regulator of the mitochondrial stress response in cardiomyocytes from Mrps5+/- mice; furthermore, ATF4 regulates Knl1 (kinetochore scaffold 1) leading to an increase in cytokinesis during cardiomyocyte proliferation. The increased cardiomyocyte proliferation observed in Mrps5+/- mice was attenuated when one allele of Atf4 was deleted genetically (Mrps5+/-/Atf4+/-), resulting in the loss in the capacity for cardiac regeneration. Either MRPS5 inhibition (or as we also demonstrate, doxycycline treatment) activate a conserved regulatory mechanism that increases the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS: These data highlight a critical role for MRPS5/ATF4 in cardiomyocytes and an exciting new avenue of study for therapies to treat myocardial injury.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Doxiciclina , Células Cultivadas , Células Madre Pluripotentes Inducidas/metabolismo , ARN Interferente Pequeño/metabolismo , Biosíntesis de Proteínas , Proliferación Celular , Regeneración , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
9.
Nat Mater ; 22(8): 1039-1046, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37500957

RESUMEN

Hydrogels are attractive materials for tissue engineering, but efforts to date have shown limited ability to produce the microstructural features necessary to promote cellular self-organization into hierarchical three-dimensional (3D) organ models. Here we develop a hydrogel ink containing prefabricated gelatin fibres to print 3D organ-level scaffolds that recapitulate the intra- and intercellular organization of the heart. The addition of prefabricated gelatin fibres to hydrogels enables the tailoring of the ink rheology, allowing for a controlled sol-gel transition to achieve precise printing of free-standing 3D structures without additional supporting materials. Shear-induced alignment of fibres during ink extrusion provides microscale geometric cues that promote the self-organization of cultured human cardiomyocytes into anisotropic muscular tissues in vitro. The resulting 3D-printed ventricle in vitro model exhibited biomimetic anisotropic electrophysiological and contractile properties.


Asunto(s)
Gelatina , Andamios del Tejido , Humanos , Andamios del Tejido/química , Gelatina/química , Miocitos Cardíacos , Ingeniería de Tejidos/métodos , Hidrogeles/química , Impresión Tridimensional
10.
Circ Res ; 131(11): e152-e168, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36263775

RESUMEN

BACKGROUND: The pioneer transcription factor (TF) GATA4 (GATA Binding Protein 4) is expressed in multiple cardiovascular lineages and is essential for heart development. GATA4 lineage-specific occupancy in the developing heart underlies its lineage specific activities. Here, we characterized GATA4 chromatin occupancy in cardiomyocyte and endocardial lineages, dissected mechanisms that control lineage specific occupancy, and analyzed GATA4 regulation of endocardial gene expression. METHODS: We mapped GATA4 chromatin occupancy in cardiomyocyte and endocardial cells of embryonic day 12.5 (E12.5) mouse heart using lineage specific, Cre-activated biotinylation of GATA4. Regulation of GATA4 pioneering activity was studied in cell lines stably overexpressing GATA4. GATA4 regulation of endocardial gene expression was analyzed using single cell RNA sequencing and luciferase reporter assays. RESULTS: Cardiomyocyte-selective and endothelial-selective GATA4 occupied genomic regions had features of lineage specific enhancers. Footprints within cardiomyocyte- and endothelial-selective GATA4 regions were enriched for NKX2-5 (NK2 homeobox 5) and ETS1 (ETS Proto-Oncogene 1) motifs, respectively, and both of these TFs interacted with GATA4 in co-immunoprecipitation assays. In stable NIH3T3 cell lines expressing GATA4 with or without NKX2-5 or ETS1, the partner TFs re-directed GATA4 pioneer binding and augmented its ability to open previously inaccessible regions, with ETS1 displaying greater potency as a pioneer partner than NKX2-5. Single-cell RNA sequencing of embryonic hearts with endothelial cell-specific Gata4 inactivation identified Gata4-regulated endocardial genes, which were adjacent to GATA4-bound, endothelial regions enriched for both GATA4 and ETS1 motifs. In reporter assays, GATA4 and ETS1 cooperatively stimulated endothelial cell enhancer activity. CONCLUSIONS: Lineage selective non-pioneer TFs NKX2-5 and ETS1 guide the activity of pioneer TF GATA4 to bind and open chromatin and create active enhancers and mechanistically link ETS1 interaction to GATA4 regulation of endocardial development.


Asunto(s)
Endocardio , Factor de Transcripción GATA4 , Proteína Proto-Oncogénica c-ets-1 , Animales , Ratones , Cromatina/metabolismo , Endocardio/metabolismo , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Miocitos Cardíacos/metabolismo , Células 3T3 NIH , Proteína Proto-Oncogénica c-ets-1/metabolismo
11.
Circ Res ; 131(12): 980-1000, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36367103

RESUMEN

BACKGROUND: RBPs (RNA-binding proteins) perform indispensable functions in the post-transcriptional regulation of gene expression. Numerous RBPs have been implicated in cardiac development or physiology based on gene knockout studies and the identification of pathogenic RBP gene mutations in monogenic heart disorders. The discovery and characterization of additional RBPs performing indispensable functions in the heart will advance basic and translational cardiovascular research. METHODS: We performed a differential expression screen in zebrafish embryos to identify genes enriched in nkx2.5-positive cardiomyocytes or cardiopharyngeal progenitors compared to nkx2.5-negative cells from the same embryos. We investigated the myocardial-enriched gene RNA-binding protein with multiple splicing (variants) 2 [RBPMS2)] by generating and characterizing rbpms2 knockout zebrafish and human cardiomyocytes derived from RBPMS2-deficient induced pluripotent stem cells. RESULTS: We identified 1848 genes enriched in the nkx2.5-positive population. Among the most highly enriched genes, most with well-established functions in the heart, we discovered the ohnologs rbpms2a and rbpms2b, which encode an evolutionarily conserved RBP. Rbpms2 localizes selectively to cardiomyocytes during zebrafish heart development and strong cardiomyocyte expression persists into adulthood. Rbpms2-deficient embryos suffer from early cardiac dysfunction characterized by reduced ejection fraction. The functional deficit is accompanied by myofibril disarray, altered calcium handling, and differential alternative splicing events in mutant cardiomyocytes. These phenotypes are also observed in RBPMS2-deficient human cardiomyocytes, indicative of conserved molecular and cellular function. RNA-sequencing and comparative analysis of genes mis-spliced in RBPMS2-deficient zebrafish and human cardiomyocytes uncovered a conserved network of 29 ortholog pairs that require RBPMS2 for alternative splicing regulation, including RBFOX2, SLC8A1, and MYBPC3. CONCLUSIONS: Our study identifies RBPMS2 as a conserved regulator of alternative splicing, myofibrillar organization, and calcium handling in zebrafish and human cardiomyocytes.


Asunto(s)
Calcio , Miocardio , Proteínas de Unión al ARN , Proteínas de Pez Cebra , Animales , Humanos , Calcio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Represoras/metabolismo , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
13.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33361330

RESUMEN

The paucity of knowledge about cardiomyocyte maturation is a major bottleneck in cardiac regenerative medicine. In development, cardiomyocyte maturation is characterized by orchestrated structural, transcriptional, and functional specializations that occur mainly at the perinatal stage. Sarcomeres are the key cytoskeletal structures that regulate the ultrastructural maturation of other organelles, but whether sarcomeres modulate the signal transduction pathways that are essential for cardiomyocyte maturation remains unclear. To address this question, here we generated mice with cardiomyocyte-specific, mosaic, and hypomorphic mutations of α-actinin-2 (Actn2) to study the cell-autonomous roles of sarcomeres in postnatal cardiomyocyte maturation. Actn2 mutation resulted in defective structural maturation of transverse-tubules and mitochondria. In addition, Actn2 mutation triggered transcriptional dysregulation, including abnormal expression of key sarcomeric and mitochondrial genes, and profound impairment of the normal progression of maturational gene expression. Mechanistically, the transcriptional changes in Actn2 mutant cardiomyocytes strongly correlated with those in cardiomyocytes deleted of serum response factor (SRF), a critical transcription factor that regulates cardiomyocyte maturation. Actn2 mutation increased the monomeric form of cardiac α-actin, which interacted with the SRF cofactor MRTFA and perturbed its nuclear localization. Overexpression of a dominant-negative MRTFA mutant was sufficient to recapitulate the morphological and transcriptional defects in Actn2 and Srf mutant cardiomyocytes. Together, these data indicate that Actn2-based sarcomere organization regulates structural and transcriptional maturation of cardiomyocytes through MRTF-SRF signaling.


Asunto(s)
Actinina/genética , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismo , Actinina/metabolismo , Animales , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Regulación de la Expresión Génica/genética , Ratones , Mitocondrias/metabolismo , Morfogénesis , Mutación , Miocitos Cardíacos/patología , Sarcómeros/patología , Factor de Respuesta Sérica/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
14.
Mol Ther ; 30(2): 898-914, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34400329

RESUMEN

Heart failure is a leading cause of fatality in Duchenne muscular dystrophy (DMD) patients. Previously, we discovered that cardiac and skeletal-muscle-enriched CIP proteins play important roles in cardiac function. Here, we report that CIP, a striated muscle-specific protein, participates in the regulation of dystrophic cardiomyopathy. Using a mouse model of human DMD, we found that deletion of CIP leads to dilated cardiomyopathy and heart failure in young, non-syndromic mdx mice. Conversely, transgenic overexpression of CIP reduces pathological dystrophic cardiomyopathy in old, syndromic mdx mice. Genome-wide transcriptome analyses reveal that molecular pathways involving fibrogenesis and oxidative stress are affected in CIP-mediated dystrophic cardiomyopathy. Mechanistically, we found that CIP interacts with dystrophin and calcineurin (CnA) to suppress the CnA-Nuclear Factor of Activated T cells (NFAT) pathway, which results in decreased expression of Nox4, a key component of the oxidative stress pathway. Overexpression of Nox4 accelerates the development of dystrophic cardiomyopathy in mdx mice. Our study indicates CIP is a modifier of dystrophic cardiomyopathy and a potential therapeutic target for this devastating disease.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Distrofia Muscular de Duchenne , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatía Dilatada/genética , Proteínas Co-Represoras , Distrofina/metabolismo , Corazón , Humanos , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/patología , Proteínas Nucleares
15.
Proc Natl Acad Sci U S A ; 117(32): 19254-19265, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32719146

RESUMEN

The appropriate arrangement of myonuclei within skeletal muscle myofibers is of critical importance for normal muscle function, and improper myonuclear localization has been linked to a variety of skeletal muscle diseases, such as centronuclear myopathy and muscular dystrophies. However, the molecules that govern myonuclear positioning remain elusive. Here, we report that skeletal muscle-specific CIP (sk-CIP) is a regulator of nuclear positioning. Genetic deletion of sk-CIP in mice results in misalignment of myonuclei along the myofibers and at specialized structures such as neuromuscular junctions (NMJs) and myotendinous junctions (MTJs) in vivo, impairing myonuclear positioning after muscle regeneration, leading to severe muscle dystrophy in mdx mice, a mouse model of Duchenne muscular dystrophy. sk-CIP is localized to the centrosome in myoblasts and relocates to the outer nuclear envelope in myotubes upon differentiation. Mechanistically, we found that sk-CIP interacts with the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex and the centriole Microtubule Organizing Center (MTOC) proteins to coordinately modulate myonuclear positioning and alignment. These findings indicate that sk-CIP may function as a muscle-specific anchoring protein to regulate nuclear position in multinucleated muscle cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Miopatías Estructurales Congénitas/fisiopatología , Proteínas Nucleares/metabolismo , Animales , Proteínas Portadoras/genética , Núcleo Celular/genética , Proteínas Co-Represoras , Humanos , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/fisiopatología , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Proteínas Nucleares/genética , Especificidad de Órganos
16.
Proc Natl Acad Sci U S A ; 117(35): 21450-21458, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817427

RESUMEN

How overall principles of cell-type-specific gene regulation (the "logic") may change during ontogeny is largely unexplored. We compared transcriptomic, epigenomic, and three-dimensional (3D) genomic profiles in embryonic (EryP) and adult (EryD) erythroblasts. Despite reduced chromatin accessibility compared to EryP, distal chromatin of EryD is enriched in H3K27ac, Gata1, and Myb occupancy. EryP-/EryD-shared enhancers are highly correlated with red blood cell identity genes, whereas cell-type-specific regulation employs different cis elements in EryP and EryD cells. In contrast to EryP-specific genes, which exhibit promoter-centric regulation through Gata1, EryD-specific genes rely more on distal enhancers for regulation involving Myb-mediated enhancer activation. Gata1 HiChIP demonstrated an overall increased enhancer-promoter interactions at EryD-specific genes, whereas genome editing in selected loci confirmed distal enhancers are required for gene expression in EryD but not in EryP. Applying a metric for enhancer dependence of transcription, we observed a progressive reliance on cell-specific enhancers with increasing ontogenetic age among diverse tissues of mouse and human origin. Our findings highlight fundamental and conserved differences at distinct developmental stages, characterized by simpler promoter-centric regulation of cell-type-specific genes in embryonic cells and increased combinatorial enhancer-driven control in adult cells.


Asunto(s)
Factores de Edad , Factor de Transcripción GATA1/genética , Regulación del Desarrollo de la Expresión Génica/genética , Animales , Cromatina , Elementos de Facilitación Genéticos/genética , Eritroblastos , Eritropoyesis/fisiología , Femenino , Expresión Génica , Genómica/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas/genética
17.
Circulation ; 143(19): 1894-1911, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33793303

RESUMEN

BACKGROUND: Mutations in tafazzin (TAZ), a gene required for biogenesis of cardiolipin, the signature phospholipid of the inner mitochondrial membrane, causes Barth syndrome (BTHS). Cardiomyopathy and risk of sudden cardiac death are prominent features of BTHS, but the mechanisms by which impaired cardiolipin biogenesis causes cardiac muscle weakness and arrhythmia are poorly understood. METHODS: We performed in vivo electrophysiology to define arrhythmia vulnerability in cardiac-specific TAZ knockout mice. Using cardiomyocytes derived from human induced pluripotent stem cells and cardiac-specific TAZ knockout mice as model systems, we investigated the effect of TAZ inactivation on Ca2+ handling. Through genome editing and pharmacology, we defined a molecular link between TAZ mutation and abnormal Ca2+ handling and contractility. RESULTS: A subset of mice with cardiac-specific TAZ inactivation developed arrhythmias, including bidirectional ventricular tachycardia, atrial tachycardia, and complete atrioventricular block. Compared with wild-type controls, BTHS-induced pluripotent stem cell-derived cardiomyocytes had increased diastolic Ca2+ and decreased Ca2+ transient amplitude. BTHS-induced pluripotent stem cell-derived cardiomyocytes had higher levels of mitochondrial and cellular reactive oxygen species than wild-type controls, which activated CaMKII (Ca2+/calmodulin-dependent protein kinase II). Activated CaMKII phosphorylated the RYR2 (ryanodine receptor 2) on serine 2814, increasing Ca2+ leak through RYR2. Inhibition of this reactive oxygen species-CaMKII-RYR2 pathway through pharmacological inhibitors or genome editing normalized aberrant Ca2+ handling in BTHS-induced pluripotent stem cell-derived cardiomyocytes and improved their contractile function. Murine Taz knockout cardiomyocytes also exhibited elevated diastolic Ca2+ and decreased Ca2+ transient amplitude. These abnormalities were ameliorated by Ca2+/calmodulin-dependent protein kinase II or reactive oxygen species inhibition. CONCLUSIONS: This study identified a molecular pathway that links TAZ mutation with abnormal Ca2+ handling and decreased cardiomyocyte contractility. This pathway may offer therapeutic opportunities to treat BTHS and potentially other diseases with elevated mitochondrial reactive oxygen species production.


Asunto(s)
Síndrome de Barth/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Síndrome de Barth/fisiopatología , Humanos , Ratones , Ratones Noqueados
18.
Circulation ; 143(20): 2007-2022, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33663221

RESUMEN

BACKGROUND: Heart failure (HF) is among the leading causes of morbidity and mortality, and its prevalence continues to rise. LARP7 (La ribonucleoprotein domain family member 7) is a master regulator that governs the DNA damage response and RNAPII (RNA polymerase II) pausing pathway, but its role in HF pathogenesis is incompletely understood. METHODS: We assessed LARP7 expression in human HF and in nonhuman primate and mouse HF models. To study the function of LARP7 in heart, we generated global and cardiac-specific LARP7 knockout mice. We acutely abolished LARP7 in mature cardiomyocytes by Cas9-mediated LARP7 somatic knockout. We overexpressed LARP7 in cardiomyocytes using adeno-associated virus serotype 9 and ATM (ataxia telangiectasia mutated protein) inhibitor. The therapeutic potential of LARP7-regulated pathways in HF was tested in a mouse myocardial infarction model. RESULTS: LARP7 was profoundly downregulated in failing human hearts and in nonhuman primate and murine hearts after myocardial infarction. Low LARP7 levels in failing hearts were linked to elevated reactive oxygen species, which activated the ATM-mediated DNA damage response pathway and promoted LARP7 ubiquitination and degradation. Constitutive LARP7 knockout in mouse resulted in impaired mitochondrial biogenesis, myocardial hypoplasia, and midgestational lethality. Cardiac-specific inactivation resulted in defective mitochondrial biogenesis, impaired oxidative phosphorylation, elevated oxidative stress, and HF by 4 months of age. These abnormalities were accompanied by reduced SIRT1 (silent mating type information regulation 2 homolog 1) stability and deacetylase activity that impaired SIRT1-mediated transcription of genes for oxidative phosphorylation and energy metabolism and dampened cardiac function. Restoring LARP7 expression after myocardial infarction by either adeno-associated virus-mediated LARP7 expression or small molecule ATM inhibitor substantially improved the function of injured heart. CONCLUSIONS: LARP7 is essential for mitochondrial biogenesis, energy production, and cardiac function by modulating SIRT1 homeostasis and activity. Reduction of LARP7 in diseased hearts owing to activation of the ATM pathway contributes to HF pathogenesis and restoring LARP7 in the injured heart confers myocardial protection. These results identify the ATM-LARP7-SIRT1 pathway as a target for therapeutic intervention in HF.


Asunto(s)
Insuficiencia Cardíaca/genética , Mitocondrias/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Biogénesis de Organelos
19.
Genome Res ; 29(2): 193-207, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30670628

RESUMEN

Cell behaviors are dictated by epigenetic and transcriptional programs. Little is known about how extracellular stimuli modulate these programs to reshape gene expression and control cell behavioral responses. Here, we interrogated the epigenetic and transcriptional response of endothelial cells to VEGFA treatment and found rapid chromatin changes that mediate broad transcriptomic alterations. VEGFA-responsive genes were associated with active promoters, but changes in promoter histone marks were not tightly linked to gene expression changes. VEGFA altered transcription factor occupancy and the distal epigenetic landscape, which profoundly contributed to VEGFA-dependent changes in gene expression. Integration of gene expression, dynamic enhancer, and transcription factor occupancy changes induced by VEGFA yielded a VEGFA-regulated transcriptional regulatory network, which revealed that the small MAF transcription factors are master regulators of the VEGFA transcriptional program and angiogenesis. Collectively these results revealed that extracellular stimuli rapidly reconfigure the chromatin landscape to coordinately regulate biological responses.


Asunto(s)
Epigénesis Genética , Neovascularización Fisiológica/genética , Transcripción Genética , Factor A de Crecimiento Endotelial Vascular/fisiología , Animales , Células Cultivadas , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Humanos , Factores de Transcripción Maf/metabolismo , Masculino , Ratones , Ratones Desnudos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
20.
Circ Res ; 126(8): 1086-1106, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32271675

RESUMEN

Maturation is the last phase of heart development that prepares the organ for strong, efficient, and persistent pumping throughout the mammal's lifespan. This process is characterized by structural, gene expression, metabolic, and functional specializations in cardiomyocytes as the heart transits from fetal to adult states. Cardiomyocyte maturation gained increased attention recently due to the maturation defects in pluripotent stem cell-derived cardiomyocyte, its antagonistic effect on myocardial regeneration, and its potential contribution to cardiac disease. Here, we review the major hallmarks of ventricular cardiomyocyte maturation and summarize key regulatory mechanisms that promote and coordinate these cellular events. With advances in the technical platforms used for cardiomyocyte maturation research, we expect significant progress in the future that will deepen our understanding of this process and lead to better maturation of pluripotent stem cell-derived cardiomyocyte and novel therapeutic strategies for heart disease.


Asunto(s)
Diferenciación Celular/fisiología , Miocitos Cardíacos/fisiología , Animales , Cardiopatías/patología , Cardiopatías/fisiopatología , Humanos , Células Madre Pluripotentes/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA