Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Ecotoxicol Environ Saf ; 280: 116557, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850695

RESUMEN

Decabromodiphenyl ether (BDE-209) is an organic compound that is widely used in rubber, textile, electronics, plastics and other industries. It has been found that BDE-209 has a destructive effect on the reproductive system of mammals. However, the effect of BDE-209 exposure on oocyte quality and whether there is a viable salvage strategy have not been reported. Here, we report that murine oocytes exposed to BDE-209 produce a series of meiostic defects, including increased fragmentation rates and decreased PBE. Furthermore, exposure of oocytes to BDE-209 hinders mitochondrial function and disrupts mitochondrial integrity. Our observations show that supplementation with NMN successfully alleviated the meiosis impairment caused by BDE-209 and averted oocyte apoptosis by suppressing ROS generation. In conclusion, our findings suggest that NMN supplementation may be able to alleviate the oocyte quality impairment induced by BDE-209 exposure, providing a potential strategy for protecting oocytes from environmental pollutant exposure.


Asunto(s)
Éteres Difenilos Halogenados , Oocitos , Especies Reactivas de Oxígeno , Animales , Éteres Difenilos Halogenados/toxicidad , Oocitos/efectos de los fármacos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Femenino , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Meiosis/efectos de los fármacos , Retardadores de Llama/toxicidad
2.
Int Heart J ; 65(2): 300-307, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556338

RESUMEN

Angiogenesis is crucial for blood supply reconstitution after myocardial infarction in patients with acute coronary syndrome (ACS). MicroRNAs are recognized as important epigenetic regulators of endothelial angiogenesis. The purpose of this study is to determine the roles of miR-522-3p in angiogenesis after myocardial infarction. The expression levels of miR-522-3p in rats' plasma and in the upper part of the ligation of the heart tissues at 28 days after myocardial infarction were significantly higher than those of the sham group. miR-522-3p mimics inhibited cell proliferations, migrations, and tube formations under hypoxic conditions in HUVECs (human umbilical vein endothelial cells), whereas miR-522-3p inhibitors did the opposite. Furthermore, studies have indicated that the inhibition of miR-522-3p by antagomir infusion promoted angiogenesis and accelerated the recovery of cardiac functions in rats with myocardial infarction.Data analysis and experimental results revealed that FOXP1 (Forkhead-box protein P1) was the target gene of miR-522-3p. Our study explored the mechanism of cardiac angiogenesis after myocardial infarction and provided a potential therapeutic approach for the treatment of ischemic heart disease in the future.


Asunto(s)
MicroARNs , Infarto del Miocardio , Animales , Humanos , Ratas , Angiogénesis , Factores de Transcripción Forkhead/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Neovascularización Fisiológica/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción
3.
J Transl Med ; 20(1): 20, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991623

RESUMEN

BACKGROUND: The aberrant expression of E3 ubiquitin ligase Pellino-1 (PELI1) contributes to several human cancer development and progression. However, its expression patterns and functional importance in papillary thyroid cancer (PTC) remains unknown. METHODS: PELI1 expression profiles in PTC tissues were obtained and analyzed through the starBase v3.0 analysis. Real-time PCR, Immunohistochemical assays (IHC) and Western blot were used to investigate the mRNA and protein levels of PELI1 in PTC. The effects of PELI1 on PTC cell progression were evaluated through CCK-8, colony formation, Transwell, and Wound healing assay in vitro, and a PTC xenograft mouse model in vivo. The downstream target signal of PELI1 in PTC was analyzed by using Kyoto encyclopedia of genes and genomes (KEGG), and bioinformatics tools were used to identify potential miRNAs targeting PELI1. Human umbilical cord mesenchymal stem cells were modified by miR-30c-5p and the miR-30c-5p containing extracellular vesicles were collected (miR-30c-5p-EVs) by ultra-high-speed centrifugation method. Then, the effects of miR-30c-5p-EVs on PELI1 expression and PTC progression were evaluated both in vitro and in vivo. RESULTS: Both mRNA and protein expression of PELI1 were widely increased in PTC tissues, and overexpression of PELI1 was positively correlated with bigger tumor size and lymph node metastases. PELI1 promoted PTC cell proliferation and migration in vitro. While, PELI1 silencing significantly suppressed PTC growth in vivo accompanied with reduced expression of Ki-67 and matrix metallopeptidase 2 (MMP-2). Mechanistically, PI3K-AKT pathway was identified as the downstream target of PELI1, and mediated the functional influence of PELI1 in PTC cells. Moreover, we found that the expression of miR-30c-5p was inversely correlated with PELI1 in PTC samples and further confirmed that miR-30c-5p was a tumor-suppressive miRNA that directly targeted PELI1 to inhibit PTC cell proliferation and migration. Furthermore, we showed that miR-30c-5p-EVs could effectively downregulate PELI1 expression and suppress the PTC cell growth in vitro and in vivo. CONCLUSION: This study not only supported the first evidence that miR-30c-5p loss-induced PELI1 accumulation facilitated cell proliferation and migration by activating the PI3K-AKT pathway in PTC but also provided novel insights into PTC therapy based on miR-carrying-hUCMSC-EVs.


Asunto(s)
MicroARNs/genética , Neoplasias de la Tiroides , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , MicroARNs/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Immunology ; 162(3): 328-338, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33283278

RESUMEN

Schistosomiasis is a neglected tropical disease with over 250 million people infected worldwide. The main clinically important species Schistosoma mansoni (S. mansoni) and Schistosoma japonicum (S. japonicum) cause inflammatory responses against tissue-trapped eggs, resulting in formation of granulomas mainly in host liver. Persistent granulomatous response results in severe fibrosis in the liver, leading to irreversible impairment of the liver and even death of the host. CD1d, a highly conserved MHC class I-like molecule, is expressed by both haematopoietic and non-haematopoietic cells. CD1d on antigen-presenting cells (APCs) of haematopoietic origin presents pathogen-derived lipid antigens to natural killer T (NKT) cells, which enables them to rapidly produce large amounts of various cytokines and facilitate CD4+ T helper (Th) cell differentiation upon invading pathogens. Noteworthy, hepatocytes of non-haematopoietic origin have recently been shown to be involved in maintaining liver NKT cell homeostasis through a CD1d-dependent manner. However, whether hepatocyte CD1d-dependent regulation of NKT cell homeostasis also modulates CD4+ Th cell responses and liver immunopathology in murine schistosomiasis remains to be addressed. Here, we show in mice that CD1d expression on hepatocytes was decreased dramatically upon S. japonicum infection, accompanied by increased NKT cells, as well as upregulated Th1 and Th2 responses. Overexpression of CD1d in hepatocytes significantly decreased local NKT numbers and cytokines (IFN-γ, IL-4, IL-13), concomitantly with downregulation of both Th1 and Th2 responses and alleviation in pathological damage in livers of S. japonicum-infected mice. These findings highlight the potential of hepatocyte CD1d-targeted therapies for liver immunopathology control in schistosomiasis.


Asunto(s)
Antígenos CD1d/metabolismo , Hepatocitos/inmunología , Hígado/inmunología , Schistosoma japonicum/inmunología , Esquistosomiasis Japónica/inmunología , Animales , Antígenos CD1d/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Hepatocitos/patología , Interacciones Huésped-Parásitos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/metabolismo , Células T Asesinas Naturales/parasitología , Schistosoma japonicum/patogenicidad , Esquistosomiasis Japónica/metabolismo , Esquistosomiasis Japónica/parasitología , Células TH1/inmunología , Células TH1/metabolismo , Células TH1/parasitología , Células Th2/inmunología , Células Th2/metabolismo , Células Th2/parasitología
5.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34502515

RESUMEN

Free proline has multiple functions in plant cells, such as regulating osmotic potential and protecting both proteins and cell membranes. The expression of Δ1-Pyrroline-5-carboxylate synthase (P5CS), a key enzyme in the proline biosynthetic pathway, increases under drought, salt and cold stress conditions, causing plant cells to accumulate large amounts of proline. In this study, we cloned and identified the P5CS gene from Stipa purpurea, which has a full-length of 2196 bp and encodes 731 amino acids. A subcellular localization analysis indicated that SpP5CS localized to the cytoplasm. The ectopic overexpression of SpP5CS in Arabidopsis thaliana resulted in higher proline contents, longer roots, higher survival rates and less membrane damage under drought stress conditions compared with wild-type controls. SpP5CS-overexpressing A. thaliana was more resistant to drought stress than the wild type, whereas the deletion mutant sp5cs was less resistant to drought stress. Thus, SpP5CS may be a potential candidate target gene for increasing plant resistance to drought stress.


Asunto(s)
Ornitina-Oxo-Ácido Transaminasa/genética , Poaceae/genética , Estrés Fisiológico/genética , Sequías , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Ornitina-Oxo-Ácido Transaminasa/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Poaceae/metabolismo , Prolina/metabolismo
6.
J Sci Food Agric ; 100(3): 1064-1071, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31713870

RESUMEN

BACKGROUND: Glucosinolates (GSLs) are secondary metabolites, mainly existing in Brassica vegetables. Their breakdown products have health benefits and contribute to the distinctive taste of these vegetables. Because of their high value, there is a lot of interest in developing breeding strategies to increase the content of beneficial GSLs in Brassica species. GSLs are synthesized from certain amino acids and their biological roles depend largely on the structure of their side chains. Flavin-containing monooxygenase (FMOGS-OX ) genes are involved in the synthesis of these side chains. To better understand GSL biosynthesis, we sequenced the transcriptomes of turnip (Brassica rapa var. rapa) tubers at four developmental stages (S1-S4) and determined their GSL content. RESULTS: The total GSL content was high at the early stage (S1) of tuber development and increased up to S3, then decreased at S4. We detected 61 differentially expressed genes, including five FMOGS-OX genes, that were related for GSL biosynthesis among the four developmental stages. Most of these genes were highly expressed at stages S1 to S3, but their expression was much lower at S4. We estimated the effect of the five FMOGS-OX genes on GSL content by overexpressing them in turnip hairy roots and found that the amount of aliphatic GSLs increased significantly in the transgenic plants. CONCLUSION: The transcriptome data and characterization of genes involved in GSL biosynthesis, particularly the FMOGS-OX genes, will be valuable for improving the yield of beneficial GSLs in turnip and other Brassica crops. © 2019 Society of Chemical Industry.


Asunto(s)
Brassica rapa/enzimología , Brassica rapa/crecimiento & desarrollo , Glucosinolatos/biosíntesis , Oxigenasas de Función Mixta/metabolismo , Proteínas de Plantas/metabolismo , Vías Biosintéticas , Brassica rapa/genética , Brassica rapa/metabolismo , Dinitrocresoles/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxigenasas de Función Mixta/genética , Proteínas de Plantas/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Transcriptoma
7.
Eur J Immunol ; 48(8): 1302-1307, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29729112

RESUMEN

Hepatic Foxp3+ Treg cells are crucial for maintaining local immune homeostasis in the liver. However, the environmental cues required for hepatic Treg cell homeostasis are unclear. In this study, we showed that the IL-33 receptor ST2 was preferentially expressed on Treg cells in the mouse liver, but it was more lowly expressed in the spleen, mesenteric lymph nodes, and blood. More importantly, we found that IL-33 promoted the proliferation of hepatic Treg cells through myeloid differentiation factor MyD88 signaling concomitant with increased cyclin-dependent kinase 4 and cyclin D1 expression. These results suggest that IL-33 is a potential tissue-specific factor controlling Treg cell homeostasis via increased Treg proliferation in the liver.


Asunto(s)
Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-33/inmunología , Factor 88 de Diferenciación Mieloide/inmunología , Linfocitos T Reguladores/inmunología , Animales , Proliferación Celular/genética , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Interleucina-33/genética , Hígado/citología , Hígado/inmunología , Ganglios Linfáticos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Transducción de Señal/inmunología , Bazo/inmunología
8.
Postgrad Med J ; 95(1123): 240-244, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31129625

RESUMEN

AIM: To evaluate the diagnostic value of interleukin-18 (IL-18) and troponin (TnI) in sepsis. METHODS: This retrospective analysis included 117 patients with sepsis (patient group) and 92 subjects who attended regular physical examinations (control group). We compared IL-18 and TnI expressions before treatment (T1) and on day 5 (T2), day 10 (T3) and day 15 (T4) of treatment. Acute Physiology and Chronic Health Evaluation II (APACHE II) guidelines were used to analyse the correlation between IL-18, TnI and APACHE II scores. RESULTS: At T1, T2, T3 and T4, the IL-18 and TnI levels were all higher in the patient group than in the control group (p<0.001). In the patient group, peak IL-18 and TnI levels were noted at T1, followed by T2, T3 and T4 (p<0.001). The linear correlation analysis revealed positive correlations between IL-18 and TnI levels and APACHE II score (r =0.759, 0.866, p <0.001). The 3-year survival rates of subjects with high IL-18 or TnI expression levels were all lower than of those with low expression levels (p=0.047, 0.048). In patients with sepsis, the expression of TnI and IL-18 is high and is positively correlated with APACHE II scores. CONCLUSIONS: Monitoring TnI and IL-18 levels can effectively evaluate the severity and recovery of patients with sepsis.


Asunto(s)
Interleucina-18/sangre , Sepsis/sangre , Troponina I/sangre , APACHE , Adulto , Femenino , Adhesión a Directriz/estadística & datos numéricos , Guías como Asunto , Humanos , Masculino , Persona de Mediana Edad , Puntuaciones en la Disfunción de Órganos , Pronóstico , Estudios Retrospectivos , Medición de Riesgo , Sepsis/fisiopatología , Regulación hacia Arriba
9.
Biochem Biophys Res Commun ; 495(2): 1851-1857, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29233696

RESUMEN

Reactive oxygen species (ROS) are a key factor in abiotic stresses; excess ROS is harmful to plants. Glutathione reductase (GR) plays an important role in scavenging ROS in plants. Here, a GR gene, named SpGR, was cloned from Stipa purpurea and characterized. The full-length open reading frame was 1497 bp, encoding 498 amino acids. Subcellular localization analysis indicated that SpGR was localized to both the plasma membrane and nucleus. The expression of SpGR was induced by cold, salt, and drought stresses. Functional analysis indicated that ectopic expression of SpGR in Arabidopsis thaliana resulted in greater tolerance to salt stress than that of wild-type plants, but no difference under cold or drought treatments. The results of GR activity and GSSG and GSH content analyses suggested that, under salt stress, transgenic plants produced more GR to reduce GSSG to GSH for scavenging ROS than wild-type plants. Therefore, SpGR may be a candidate gene for plants to resist abiotic stress.


Asunto(s)
Arabidopsis/fisiología , Glutatión Reductasa/química , Glutatión Reductasa/metabolismo , Plantas Modificadas Genéticamente/fisiología , Poaceae/enzimología , Especies Reactivas de Oxígeno/metabolismo , Plantas Tolerantes a la Sal/genética , Clonación Molecular/métodos , Activación Enzimática , Mejoramiento Genético/métodos , Glutatión Reductasa/genética , Poaceae/genética
10.
Neural Plast ; 2015: 249756, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26697232

RESUMEN

Matrix metalloproteinases (MMPs) are widely implicated in inflammation and tissue remodeling associated with various neurodegenerative diseases and play an important role in nociception and allodynia. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) plays a key regulatory role for MMP activities. However, the role of EMMPRIN in the development of neuropathic pain is not clear. Western blotting, real-time quantitative RT-PCR (qRT-PCR), and immunofluorescence were performed to determine the changes of messenger RNA and protein of EMMPRIN/OX47 and their cellular localization in the rat dorsal root ganglion (DRG) after nerve injury. Paw withdrawal threshold test was examined to evaluate the pain behavior in spinal nerve ligation (SNL) model. The lentivirus containing OX47 shRNA was injected into the DRG one day before SNL. The expression level of both mRNA and protein of OX47 was markedly upregulated in ipsilateral DRG after SNL. OX47 was mainly expressed in the extracellular matrix of DRG. Administration of shRNA targeted against OX47 in vivo remarkably attenuated mechanical allodynia induced by SNL. In conclusion, peripheral nerve injury induced upregulation of OX47 in the extracellular matrix of DRG. RNA interference against OX47 significantly suppressed the expression of OX47 mRNA and the development of mechanical allodynia. The altered expression of OX47 may contribute to the development of neuropathic pain after nerve injury.


Asunto(s)
Basigina/metabolismo , Ganglios Espinales/metabolismo , Hiperalgesia/metabolismo , Nervios Espinales/lesiones , Animales , Matriz Extracelular/metabolismo , Masculino , Umbral del Dolor/fisiología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
11.
Kaohsiung J Med Sci ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963317

RESUMEN

An increasing number of elderly individuals are experiencing postoperative cognitive dysfunction (POCD) problems after undergoing hip replacement surgery, with gut microbiota metabolites playing a role in its pathogenesis. Among these, the specific effects of trimethylamine N-oxide (TMAO) on POCD are still unclear. This study aimed to explore the role of TMAO on cognitive dysfunction and underlying mechanisms in mice. The POCD model was created through femoral fracture surgery in elderly mice, followed by cognitive function assessments using the Morris Water Maze and Novel Object Recognition tests. The gut microbiota depletion and fecal microbiota transplantation were performed to examine the relationship between TMAO levels and cognitive outcomes. The effects of TMAO treatment on cognitive dysfunction, microglial activation, and inflammatory cytokine levels in the brain were also evaluated, with additional assessment of the role of microglial ablation in reducing TMAO-induced cognitive impairment. Elevated TMAO levels were found to be associated with cognitive decline in mice following femoral fracture surgery, with gut microbiota depletion mitigating both TMAO elevation and cognitive dysfunction. In contrast, fecal microbiota transplantation from postoperative mice resulted in accelerated cognitive dysfunction and TMAO accumulation in germ-free mice. Furthermore, TMAO treatment worsened cognitive deficits, neuroinflammation, and promoted microglial activation, which were reversed through the ablation of microglia. TMAO exacerbates cognitive dysfunction and neuroinflammation in POCD mice, with microglial activation playing a crucial role in this process. Our findings may provide new therapeutic strategies for managing TMAO-related POCD and improving the quality of life for elderly patients.

12.
J Biomed Res ; : 1-15, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38808551

RESUMEN

Premature ovarian insufficiency (POI) caused by chemotherapy is a common complication in female cancer survivors of childbearing age. Traditional methods including mesenchymal stem cell (MSC) transplant and hormone replacement therapy have limited clinical application due to their drawbacks, and more methods need to be developed. In the current study, the potential effects and underlying mechanisms of human umbilical cord MSC-derived extracellular vesicles (hUCMSC-EVs) were investigated in a cisplatin (CDDP)-induced POI mouse model and a human granulosa cell (GC) line. The results showed that hUCMSC-EVs significantly attenuated body weight loss, ovarian weight loss, ovary atrophy, and follicle loss in moderate-dose (1.5 mg/kg) CDDP-induced POI mice, similar to the effects observed with hUCMSCs. We further discovered that the hUCMSC-EVs might inhibit CDDP-induced ovarian GC apoptosis by upregulating anti-apoptotic miRNA levels in GCs, thereby downregulating the mRNA levels of multiple pro-apoptotic genes. In general, our findings indicate that moderate-dose chemotherapy may be a better choice for clinical oncotherapy considering the effective rescue of oncotherapy-induced ovarian damage with hUCMSC-EVs. Additionally, multiple miRNAs in hUCMSC-EVs may potentially be used to inhibit chemotherapy-induced ovarian GC apoptosis, thereby restoring ovarian function and improving the life quality of female cancer patients.

13.
Bioelectrochemistry ; 157: 108679, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38471411

RESUMEN

The primary objective of this study is to elucidate the synergistic effect of an exogenous redox mediator and carbon starvation on the microbiologically influenced corrosion (MIC) of metal nickel (Ni) by nitrate reducing Pseudomonas aeruginosa. Carbon source (CS) starvation markedly accelerates Ni MIC by P. aeruginosa. Moreover, the addition of exogenous riboflavin significantly decreases the corrosion resistance of Ni. The MIC rate of Ni (based on corrosion loss volume) is ranked as: 10 % CS level + riboflavin > 100 % CS level + riboflavin > 10 % CS level > 100 % CS level. Notably, starved P. aeruginosa biofilm demonstrates greater aggressiveness in contributing to the initiation of surface pitting on Ni. Under CS deficiency (10 % CS level) in the presence of riboflavin, the deepest Ni pits reach a maximum depth of 11.2 µm, and the corrosion current density (icorr) peak at approximately 1.35 × 10-5 A·cm-2, representing a 2.6-fold increase compared to the full-strength media (5.25 × 10-6 A·cm-2). For the 10 % CS and 100 % CS media, the addition of exogenous riboflavin increases the Ni MIC rate by 3.5-fold and 2.9-fold, respectively. Riboflavin has been found to significantly accelerate corrosion, with its augmentation effect on Ni MIC increasing as the CS level decreases. Overall, riboflavin promotes electron transfer from Ni to P. aeruginosa, thus accelerating Ni MIC.


Asunto(s)
Níquel , Pseudomonas aeruginosa , Corrosión , Carbono , Riboflavina/farmacología , Biopelículas
14.
Acta Biomater ; 171: 506-518, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37778485

RESUMEN

Developing environmentally friendly, broad-spectrum, and long-lasting antibacterial materials remains challenging. Our ternary BiOI@Bi2S3/MXene composites, which exhibit both photothermal therapy (PTT) and photodynamic therapy (PDT) antibacterial properties, were synthesized through in-situ vulcanization of hollow flower-shaped BiOI on the surface of two-dimensional Ti3C2 MXene. The unique hollow flower-shaped BiOI structure with a high exposure of the (001) crystal plane amplifies light reflection and scattering, offering more active sites to improve light utilization. Under 808 nm irradiation, these composites achieved a photothermal conversion efficiency of 57.8 %, boosting the PTT antibacterial effect. The heterojunction between Bi2S3 and BiOI creates a built-in electric field at the interface, promoting hole and electron transfer. Significantly, the close-contact heterogeneous interface enhances charge transfer and suppresses electron-hole recombination, thereby boosting PDT bacteriostatic performance. EPR experiments confirmed that ∙O2- and •OH radicals play major roles in photocatalytic bacteriostatic reactions. The combined antibacterial action of PTT and PDT led to efficiencies of 99.7 % and 99.8 % against P. aeruginosa and S. aureus, respectively, under 808 nm laser irradiation. This innovative strategy and thoughtful design open new avenues for heterojunction materials in PTT and PDT sterilization. STATEMENT OF SIGNIFICANCE: Photodynamic and photothermal therapy is a promising antibacterial treatment, but its efficiency still limits its application. To overcome this limitation, we prepared three-dimensional heterogeneous BiOI@Bi2S3/MXene nanocomposites through in-situ vulcanization of hollow flower-shaped BiOI with a high exposure of the (001) crystal plane onto the surface of two-dimensional MXene material. The resulting ternary material forms a close-contact heterogeneous interface, which improves charge transfer channels, reduces electron-hole pair recombination, and amplifies photodynamic bacteriostatic performance. These nanocomposites exhibit photothermal conversion efficiency of 57.8 %, enhancing their photothermal bactericidal effects. They demonstrated antibacterial efficiencies of 99.7 % against P. aeruginosa and 99.8 % against S. aureus. Therefore, this study provides a promising method for the synthesis of environmentally friendly and efficient antibacterial materials.


Asunto(s)
Fotoquimioterapia , Staphylococcus aureus , Antibacterianos/farmacología , Electricidad , Pseudomonas aeruginosa
15.
Bioelectrochemistry ; 153: 108453, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37230047

RESUMEN

Carbon starvation can affect the activity of microbes, thereby affecting the metabolism and the extracellular electron transfer (EET) process of biofilm. In the present work, the microbiologically influenced corrosion (MIC) behavior of nickel (Ni) was investigated under organic carbon starvation by Desulfovibrio vulgaris. Starved D. vulgaris biofilm was more aggressive. Extreme carbon starvation (0% CS level) reduced weight loss due to the severe weakening of biofilm. The corrosion rate of Ni (based on weight loss) was sequenced as 10% CS level > 50% CS level > 100 CS level > 0% CS level. Moderate carbon starvation (10% CS level) caused the deepest pit of Ni in all the carbon starvation treatments, with a maximal pit depth of 18.8 µm and a weight loss of 2.8 mg·cm-2 (0.164 mm·y-1). The corrosion current density (icorr) of Ni for the 10% CS level was as high as 1.62 × 10-5 A·cm-2, which was approximately 2.9-fold greater than the full-strength medium (5.45 × 10-6 A·cm-2). The electrochemical data corresponded to the corrosion trend revealed by weight loss. The various experimental data rather convincingly pointed to the Ni MIC of D. vulgaris following the EET-MIC mechanism despite a theoretically low Ecell value (+33 mV).


Asunto(s)
Desulfovibrio vulgaris , Desulfovibrio , Humanos , Desulfovibrio vulgaris/metabolismo , Níquel , Corrosión , Carbono/metabolismo , Biopelículas , Pérdida de Peso , Acero
16.
Cell Prolif ; 56(8): e13419, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36756972

RESUMEN

Benzyl butyl phthalate (BBP) is a chemical softener and plasticizer commonly used in toys, food packaging, wallpaper, detergents and shampoos. The estrogenic actions of BBP have detrimental effects on humans and animals. In this study, the specific influence of BBP on mouse oocyte maturation was investigated using in vivo and in vitro models. The experiment first verified that BBP exposure significantly affected the rate of oocyte exclusion of the first polar body, although it did not affect germinal vesicle breakdown (GVBD) through in vitro oocyte culture system. Results of in vitro fertilization show that BBP exposure affects blastocyst rate. Subsequently, the results obtained by immunofluorescence staining technology showed that oocyte spindle organization, chromosomal arrangement and the distribution of cortical actin were disrupted by BBP exposure, and led to the failure of oocyte meiotic maturation and the subsequent early embryo development. Singe-cell transcriptome analysis found that BBP exposure altered the expression levels of 588 genes, most associated with mitochondria-related oxidative stress. Further analysis demonstrated that the detrimental effects of BBP involved the disruption of mitochondrial function and oxidative stress-induced early apoptosis. Nicotinamide mononucleotide (NMN) supplementation reduced the adverse effects of BBP. Collectively, these findings revealed a mechanism of BBP-induced toxicity on female reproduction and showed that NMN provides an effective treatment for BBP actions.


Asunto(s)
Mononucleótido de Nicotinamida , Ácidos Ftálicos , Humanos , Femenino , Animales , Ratones , Mononucleótido de Nicotinamida/metabolismo , Mononucleótido de Nicotinamida/farmacología , Oocitos/metabolismo , Ácidos Ftálicos/farmacología , Ácidos Ftálicos/toxicidad , Estrés Oxidativo , Nucleótidos/metabolismo , Apoptosis
17.
J Colloid Interface Sci ; 645: 251-265, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37149999

RESUMEN

The Z-scheme heterojunction has demonstrated significant potential for promoting photogenerated carrier separation. However, the rational design of all-solid Z-scheme heterojunctions catalysts and the controversies about carrier transfer path of direct Z-scheme heterojunctions catalysts face various challenges. Herein, a novel heterojunction, Cu2O@V-CN (octa), was fabricated using V-CN (carbon nitride with nitrogen-rich vacancies) in-situ electrostatic self-wrapping Cu2O octahedra. Density functional theory (DFT) calculations revealed that the separation of carriers across the Cu2O@V-CN (octa) heterointerface was directly mapped to the Z-scheme mechanism compared to Cu2O/V-CN (sphere). This is because the Cu2O octahedra expose more highly active (111) lattice planes with more terminal Cu atoms and V-CN with abundant nitrogen vacancies to form delocalized electronic structures like electronic reservoirs. This facilitates the wrapping of Cu2O octahedra by V-CN and protects their stability via tighter interfacial contact, thus enhancing the tunneling of carriers for rapid photocatalytic sterilization. These findings provide novel approaches for designing high-efficiency Cu2O-based photocatalytic antifoulants for practical applications.

18.
Stem Cell Rev Rep ; 19(4): 1051-1066, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36696015

RESUMEN

Mesenchymal stem cell-derived extracellular vesicles (MSCs-EVs) possess cardioprotection in acute myocardial infarction. Nevertheless, the therapeutic intervention potential and the molecular mechanism of EVs from NMN (Nicotinamide mononucleotide) preconditioned hUCMSCs (N-EVs) in acute myocardial infarction remains unknown. In the present study, EVs from hUCMSCs (M-EVs) and N-EVs were identified by electron microscopy, immunoblotting and nanoparticle tracking analysis. Compared with M-EVs, N-EVs significantly increased the proliferation, migration, and angiogenesis of HUVECs. Meanwhile, N-EVs markedly reduced apoptosis and cardiac fibrosis and promoted angiogenesis in the peri-infarct region in the MI rats. A high-throughput miRNA sequencing and qPCR methods analysis revealed that miR-210-3p was abundant in N-EVs and the expression of miR-210-3p was obviously upregulated in HUVECs after N-EVs treated. Overexpression of miR-210-3p in HUVECs significantly enhanced the tube formation, migration and proliferative capacities of HUVECs. However, downregulation of miR-210-3p in HUVECs markedly decreased the tube formation, migration and proliferative capacities of HUVECs. Furthermore, bioinformatics analysis and luciferase assays revealed that EphrinA3 (EFNA3) was a direct target of miR-210-3p. Knockdown of miR-210-3p in N-EVs significantly impaired its ability to protect the heart after myocardial infarction. Altogether, these results indicated that N-EVs promoted the infarct healing through improvement of angiogenesis by miR-210-3p via targeting the EFNA3. Created with Biorender.com.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Infarto del Miocardio , Animales , Ratas , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Corazón , MicroARNs/genética
19.
Bioact Mater ; 19: 139-154, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35475028

RESUMEN

Ligamentum flavum (LF) hypertrophy (LFH) has been recognised as one of the key contributors to lumbar spinal stenosis. Currently, no effective methods are available to ameliorate this hypertrophy. In this study, human umbilical cord mesenchymal stromal cell-derived extracellular vesicles (hUCMSC-EVs) were introduced for the first time as promising vehicles for drug delivery to treat LFH. The downregulation of miR-146a-5p and miR-221-3p expressions in human LF tissues negatively correlated with increased LF thickness. The hUCMSC-EVs enriched with these two miRNAs significantly suppressed LFH in vivo and notably ameliorated the progression of transforming growth factor ß1(TGF-ß1)-induced fibrosis in vitro after delivering these two miRNAs to mouse LF cells. The results further demonstrated that miR-146a-5p and miR-221-3p directly bonded to the 3'-UTR regions of SMAD4 mRNA, thereby inhibiting the TGF-ß/SMAD4 signalling pathway. Therefore, this translational study determined the effectiveness of a hUCMSC-EVs-based approach for the treatment of LFH and revealed the critical target of miR-146a-5p and miR-221-3p. Our findings provide new insights into promising therapeutics using a hUCMSC-EVs-based delivery system for patients with lumbar spinal stenosis.

20.
PLoS Negl Trop Dis ; 17(5): e0011385, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37253066

RESUMEN

Schistosomiasis is a serious and neglected disease with a high prevalence in tropical and subtropical countries. The primary pathology of hepatic schistosomiasis caused by Schistosoma japonicum (S. japonicum) or Schistosoma mansoni (S. mansoni) infection is egg-induced granuloma and subsequent fibrosis in the liver. Activation of hepatic stellate cells (HSCs) is the central driver of liver fibrosis. Macrophages (Mφ), making up 30% of cells in hepatic granulomas, directly or indirectly regulate HSC activation by paracrine mechanisms, via secreting cytokines or chemokines. Currently, Mφ-derived extracellular vesicles (EVs) are broadly involved in cell communication with adjacent cell populations. However, whether Mφ-derived EVs could target neighboring HSCs to regulate their activation during schistosome infection remains largely unknown. Schistosome egg antigen (SEA) is considered to be the main pathogenic complex mixture involved in liver pathology. Here, we demonstrated that SEA induced Mφ to produce abundant extracellular vesicles, which directly activated HSCs by activating their autocrine TGF-ß1 signaling. Mechanistically, EVs derived from SEA-stimulated Mφ contained increased miR-33, which were transferred into HSCs and subsequently upregulated autocrine TGF-ß1 in HSCs through targeting and downregulating SOCS3 expression, thereby promoting HSC activation. Finally, we validated that EVs derived from SEA-stimulated Mφ utilized enclosed miR-33 to promote HSC activation and liver fibrosis in S. japonicum-infected mice. Overall, our study indicates that Mφ-derived EVs play important roles in the paracrine regulation of HSCs during the progression of hepatic schistosomiasis, representing a potential target for the prevention of liver fibrosis in hepatic schistosomiasis.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Schistosoma japonicum , Esquistosomiasis , Animales , Ratones , Factor de Crecimiento Transformador beta1 , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/patología , Esquistosomiasis/patología , Hígado/patología , Schistosoma japonicum/fisiología , MicroARNs/genética , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA