Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 40(6): 3004-3014, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38294191

RESUMEN

Unequivocally, Pb2+ as a harmful substance damaging children's brain and nerve systems, thereby causing behavior and learning disabilities, should be detected much lower than the elevated blood lead for children, 240 nM, endorsed by US CDC considering the unknown neurotoxic effects, yet the ultralow detection limit up to sub-ppb level remains a challenge due to the intrinsically insufficient sensitivity in the current analytical techniques. Here, we present nanoemulsion (NE)-integrated single-entity electrochemistry (NI-SEE) toward ultrasensitive sensing of blood lead using Pb-ion-selective ionophores inside a NE, i.e., Pb2+-selective NE. Through the high thermodynamic selectivity between Pb2+ and Pb-ionophore IV, and the extremely large partition coefficient for the Pb2+-Pb-ionophore complex inside NEs, we modulate the selectivity and sensitivity of NI-SEE for Pb2+ sensing up to an unprecedentedly low detection limit, 20 ppt in aqueous solutions, and lower limit of quantitation, 40 ppb in blood serums. This observation is supported by molecular dynamics simulations, which clearly corroborate intermolecular interactions, e.g., H-bonding and π*-n, between the aromatic rings of Pb-ionophore and lone pair electrons of oxygen in dioctyl sebacate (DOS), plasticizers of NEs, subsequently enhancing the current intensity in NI-SEE. Moreover, the highly sensitive sensing of Pb2+ is enabled by the appropriate suppression of hydroxyl radical formation during NI-SEE under a cathodic potential applied to a Pt electrode. Overall, the experimentally demonstrated NI-SEE approach and the results position our new sensing technology as potential sensors for practical environmental and biomedical applications as well as a platform to interrogate the stoichiometry of target ion-ionophore recognition inside a NE as nanoreactors.


Asunto(s)
Plomo , Agua , Niño , Humanos , Electroquímica/métodos , Ionóforos/química , Electrodos
2.
Anal Chem ; 95(9): 4271-4281, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36808982

RESUMEN

Here, we report on the successful demonstration and application of carbonate (CO32-) ion-selective amperometric/voltammetric nanoprobes based on facilitated ion transfer (IT) at the nanoscale interface between two immiscible electrolyte solutions. This electrochemical study reveals critical factors to govern CO32--selective nanoprobes using broadly available Simon-type ionophores forming a covalent bond with CO32-, i.e., slow dissolution of lipophilic ionophores in the organic phase, activation of hydrated ionophores, peculiar solubility of a hydrated ion-ionophore complex near the interface, and cleanness at the nanoscale interface. These factors are experimentally confirmed by nanopipet voltammetry, where a facilitated CO32- IT is studied with a nanopipet filled with an organic phase containing the trifluoroacetophenone derivative CO32-ionophore (CO32-ionophore VII) by voltammetrically and amperometrically sensing CO32- in water. Theoretical assessments of reproducible voltammetric data confirm that the dynamics of CO32- ionophore VII-facilitated ITs (FITs) follows the one-step electrochemical (E) mechanism controlled by both water-finger formation/dissociation and ion-ionophore complexation/dissociation during interfacial ITs. The yielded rate constant, k0 = 0.048 cm/s, is very similar to the reported values of other FIT reactions using ionophores forming non-covalent bonds with ions, implying that a weak binding between CO32- ion-ionophore enables us to observe FITs by fast nanopipet voltammetry regardless of the nature of bondings between the ion and ionophore. The analytical utility of CO32--selective amperometric nanoprobes is further demonstrated by measuring the CO32- concentration produced by metal-reducing bacteria Shewanella oneidensis MR-1 as a result of organic fuel oxidation in bacterial growth media in the presence of various interferents such as H2PO4-, Cl-, and SO42-.

3.
Anal Chem ; 91(3): 1873-1879, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30628433

RESUMEN

Effective delivery and accumulation of antimicrobial agents into the microbial organism is essential for the treatment of bacterial infections. Transports of hydrophilic drug molecules, however, encounter a robust barrier of hydrophobic double membrane cell envelope, thus, leading to drug-resistance in Gram-negative bacteria. Accordingly, a deeper understanding about a transit of charged molecules through a bacterial membrane is needed to remediate the antibacterial resistance. Herein, we apply a steady-state voltammetry using nanopipet-supported interfaces between two immiscible electrolyte solutions (ITIES) to quantitatively study transport-kinetics of antimicrobial drug ions (quinolones and sulfonamides) at a water/oil interface. Importantly, ITIES can mimic a cellular membrane system, thus, being employed as insightful surrogates for the kinetic study of drug entry through bacterial cytoplasmic membranes. This approach enables us to voltammetrically and amperometrically detect redox-inactive drug ions as pristine under physiological conditions. Considerably slow kinetics of drug-ion transports are successfully measured by nanopipet voltammetry and theoretically analyzed. This analysis reveals that the drug-ion transport is ∼3 orders of magnitude slower than tetrabutylammonium ion transport. In addition, the extreme hydrophilicity of drug ions in comparison to ClO4- is quantitatively assessed from half-wave potentials of obtained voltammograms. The high hydrophilicity exclusively attributed to localized negative charges on carboxylate or amide group of deprotonated quinolone or sulfonamide, respectively, may play a dominant role in sluggish kinetics due to the increase in energy barriers upon interfacial ion transfer. Notably, this study using nanopipet voltammetry provides physicochemical insights on the correlation between structural properties of pristine drug ions and their transfer kinetics at a water/oil interface in lieu of biological membranes.


Asunto(s)
Antibacterianos/química , Técnicas Electroquímicas , Nanopartículas/química , Quinolonas/química , Sulfonamidas/química , Electrodos , Iones/química , Cinética , Estructura Molecular , Aceites/química , Tamaño de la Partícula , Agua/química
4.
Anal Chem ; 91(15): 9599-9607, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31260275

RESUMEN

New electrochemical approaches have been applied to investigate nanoemulsions (NEs) for their nanostructures and the relevant electrochemical activity by single-entity electrochemistry (SEE). Herein, we make highly monodisperse NEs with ∼40 nm diameter, composed of biocompatible surfactants, castor oil as plasticizers, and ion exchangers. Dynamic light scattering (DLS) measurements with periodically varying surfactant to oil ratios provide us with a structural implication about uneven distributions of incorporating components inside NEs. To support this structural insight, we apply SEE and selectively monitor electron-transfer reactions occurring at individual NEs containing ferrocene upon each collision onto a Pt ultramicroelectrode. The quantitative analysis of the nanoelectrochemical results along with DLS and transmission electron microscopy (TEM) measurements reveal nanostructured compartments of incorporating components inside NEs and their effect on the electrochemical behavior. Indeed, a tunneling barrier inside NEs could be formed depending on the NE composition, thus determining an electrochemical behavior of NEs, which cannot be differentiated by a general morphological study such as DLS and TEM but by our SEE measurements. Furthermore, by employing the nanopipet voltammetry with an interface between two immiscible electrolyte solutions (ITIES) to mimic the NE interface, we could explicitly investigate that the electron-transfer reaction occurring inside NEs is facilitated by the ion-transfer reaction. Overall, these comprehensive electrochemical approaches enable us to elucidate the relation between structures and the electrochemical functionality of NEs and provide quantitative criteria for the proper compositions of NEs regarding their activity in the electrochemical applications. Also, this finding should be a prerequisite for suitable biomedical/electrochemical applications of NEs.

5.
Anal Chim Acta ; 1139: 129-137, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33190695

RESUMEN

We demonstrate a new electroanalytical technique using nanoemulsions (NEs) as a nanoextractor combined with single entity electrochemistry (SEE) to separate, preconcentrate analytes from bulk media, and even detect them in situ, enabling ultratrace level analysis. This approach is based on our hypothesis that the custom-designed NEs would enable to effectively scavenge compounds from bulk media. Herein, we use Pluronic F-127 functionalized NEs to extract, preconcentrate target analytes e.g., ferrocene derivatives as a model aromatic toxicant dissolved in the water, and employ SEE to in situ detect and quantitatively estimate analytes extracted in individual NEs. Extraction was markedly efficient to reach ∼8 orders of magnitude of preconcentration factor under the true equilibrium, thereby enabling ultratrace level analysis with a detection limit of ∼0.2 ppb. The key step to attain high sensitivity in our measurements was to modulate the total amount of added NEs respect to the total volume of bulk solution, thereby controlling the extracted amount of analytes in each NE. Our approach is readily applicable to investigate other aromatic toxicants dissolved in the water, thus detecting hazardous carcinogen, 2-aminobiphenyl in the water up to ∼0.1 ppb level. Given the excellent detection performance as well as the broad applicability for ubiquitous aromatic contaminants, the combination of NEs with SEE offers great prospects as a sensor for environmental applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA