Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(1): 106-119.e14, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33333024

RESUMEN

The Coronaviridae are a family of viruses that cause disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E), and glycosaminoglycans (for OC43). Additionally, we identified phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol kinases and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle and the development of host-directed therapies.


Asunto(s)
COVID-19/genética , Infecciones por Coronavirus/genética , Coronavirus/fisiología , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Patógeno , SARS-CoV-2/fisiología , Células A549 , Animales , Vías Biosintéticas/efectos de los fármacos , COVID-19/virología , Línea Celular , Chlorocebus aethiops , Colesterol/biosíntesis , Colesterol/metabolismo , Análisis por Conglomerados , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Resfriado Común/genética , Resfriado Común/virología , Coronavirus/clasificación , Infecciones por Coronavirus/virología , Técnicas de Inactivación de Genes , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Ratones , Fosfatidilinositoles/biosíntesis , Células Vero , Internalización del Virus/efectos de los fármacos , Replicación Viral
2.
Cell ; 184(2): 323-333.e9, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33306959

RESUMEN

The December 2019 outbreak of a novel respiratory virus, SARS-CoV-2, has become an ongoing global pandemic due in part to the challenge of identifying symptomatic, asymptomatic, and pre-symptomatic carriers of the virus. CRISPR diagnostics can augment gold-standard PCR-based testing if they can be made rapid, portable, and accurate. Here, we report the development of an amplification-free CRISPR-Cas13a assay for direct detection of SARS-CoV-2 from nasal swab RNA that can be read with a mobile phone microscope. The assay achieved ∼100 copies/µL sensitivity in under 30 min of measurement time and accurately detected pre-extracted RNA from a set of positive clinical samples in under 5 min. We combined crRNAs targeting SARS-CoV-2 RNA to improve sensitivity and specificity and directly quantified viral load using enzyme kinetics. Integrated with a reader device based on a mobile phone, this assay has the potential to enable rapid, low-cost, point-of-care screening for SARS-CoV-2.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , Teléfono Celular/instrumentación , Imagen Óptica/métodos , ARN Viral/análisis , Carga Viral/métodos , Animales , Prueba de Ácido Nucleico para COVID-19/economía , Prueba de Ácido Nucleico para COVID-19/instrumentación , Sistemas CRISPR-Cas , Línea Celular , Proteínas de la Nucleocápside de Coronavirus/genética , Humanos , Nasofaringe/virología , Imagen Óptica/instrumentación , Fosfoproteínas/genética , Pruebas en el Punto de Atención , Interferencia de ARN , ARN Viral/genética , Sensibilidad y Especificidad , Carga Viral/economía , Carga Viral/instrumentación
3.
Nat Methods ; 20(7): 1070-1081, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37291262

RESUMEN

The development of transgenic mouse models that express genes of interest in specific cell types has transformed our understanding of basic biology and disease. However, generating these models is time- and resource-intensive. Here we describe a model system, SELective Expression and Controlled Transduction In Vivo (SELECTIV), that enables efficient and specific expression of transgenes by coupling adeno-associated virus (AAV) vectors with Cre-inducible overexpression of the multi-serotype AAV receptor, AAVR. We demonstrate that transgenic AAVR overexpression greatly increases the efficiency of transduction of many diverse cell types, including muscle stem cells, which are normally refractory to AAV transduction. Superior specificity is achieved by combining Cre-mediated AAVR overexpression with whole-body knockout of endogenous Aavr, which is demonstrated in heart cardiomyocytes, liver hepatocytes and cholinergic neurons. The enhanced efficacy and exquisite specificity of SELECTIV has broad utility in development of new mouse model systems and expands the use of AAV for gene delivery in vivo.


Asunto(s)
Técnicas de Transferencia de Gen , Vectores Genéticos , Ratones , Animales , Vectores Genéticos/genética , Ratones Transgénicos , Terapia Genética , Transgenes , Dependovirus/genética , Transducción Genética
4.
J Virol ; 97(4): e0194822, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36971544

RESUMEN

Adeno-associated virus (AAV) vectors are one of the leading platforms for gene delivery for the treatment of human genetic diseases, but the antiviral cellular mechanisms that interfere with optimal transgene expression are incompletely understood. Here, we performed two genome-scale CRISPR screens to identify cellular factors that restrict transgene expression from recombinant AAV vectors. Our screens revealed several components linked to DNA damage response, chromatin remodeling, and transcriptional regulation. Inactivation of the Fanconi anemia gene FANCA; the human silencing hub (HUSH)-associated methyltransferase SETDB1; and the gyrase, Hsp90, histidine kinase, and MutL (GHKL)-type ATPase MORC3 led to increased transgene expression. Moreover, SETDB1 and MORC3 knockout improved transgene levels of several AAV serotypes as well as other viral vectors, such as lentivirus and adenovirus. Finally, we demonstrated that the inhibition of FANCA, SETDB1, or MORC3 also enhanced transgene expression in human primary cells, suggesting that they could be physiologically relevant pathways that restrict AAV transgene levels in therapeutic settings. IMPORTANCE Recombinant AAV (rAAV) vectors have been successfully developed for the treatment of genetic diseases. The therapeutic strategy often involves the replacement of a defective gene by the expression of a functional copy from the rAAV vector genome. However, cells possess antiviral mechanisms that recognize and silence foreign DNA elements thereby limiting transgene expression and its therapeutic effect. Here, we utilize a functional genomics approach to uncover a comprehensive set of cellular restriction factors that inhibit rAAV-based transgene expression. Genetic inactivation of selected restriction factors increased rAAV transgene expression. Hence, modulation of identified restriction factors has the potential to enhance AAV gene replacement therapies.


Asunto(s)
Factores de Restricción Antivirales , Dependovirus , Vectores Genéticos , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Dependovirus/genética , Dependovirus/inmunología , Factores de Restricción Antivirales/genética , Factores de Restricción Antivirales/metabolismo , Transgenes/genética , Regulación Viral de la Expresión Génica/genética , Células A549 , Células K562 , Técnicas de Inactivación de Genes , Células Cultivadas , Humanos , Anemia de Fanconi/genética
5.
Nature ; 535(7610): 159-63, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27383987

RESUMEN

The Flaviviridae are a family of viruses that cause severe human diseases. For example, dengue virus (DENV) is a rapidly emerging pathogen causing an estimated 100 million symptomatic infections annually worldwide. No approved antivirals are available to date and clinical trials with a tetravalent dengue vaccine showed disappointingly low protection rates. Hepatitis C virus (HCV) also remains a major medical problem, with 160 million chronically infected patients worldwide and only expensive treatments available. Despite distinct differences in their pathogenesis and modes of transmission, the two viruses share common replication strategies. A detailed understanding of the host functions that determine viral infection is lacking. Here we use a pooled CRISPR genetic screening strategy to comprehensively dissect host factors required for these two highly important Flaviviridae members. For DENV, we identified endoplasmic-reticulum (ER)-associated multi-protein complexes involved in signal sequence recognition, N-linked glycosylation and ER-associated degradation. DENV replication was nearly completely abrogated in cells deficient in the oligosaccharyltransferase (OST) complex. Mechanistic studies pinpointed viral RNA replication and not entry or translation as the crucial step requiring the OST complex. Moreover, we show that viral non-structural proteins bind to the OST complex. The identified ER-associated protein complexes were also important for infection by other mosquito-borne flaviviruses including Zika virus, an emerging pathogen causing severe birth defects. By contrast, the most significant genes identified in the HCV screen were distinct and included viral receptors, RNA-binding proteins and enzymes involved in metabolism. We found an unexpected link between intracellular flavin adenine dinucleotide (FAD) levels and HCV replication. This study shows notable divergence in host-depenency factors between DENV and HCV, and illuminates new host targets for antiviral therapy.


Asunto(s)
Sistemas CRISPR-Cas/genética , Virus del Dengue/fisiología , Genoma Humano/genética , Hepacivirus/fisiología , Factores Celulares Derivados del Huésped/genética , Interacciones Huésped-Patógeno/genética , Virus del Dengue/genética , Virus del Dengue/crecimiento & desarrollo , Descubrimiento de Drogas , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Flavina-Adenina Dinucleótido/biosíntesis , Flavina-Adenina Dinucleótido/metabolismo , Infecciones por Flavivirus/genética , Infecciones por Flavivirus/virología , Glicosilación , Hexosiltransferasas/deficiencia , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Humanos , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Terapia Molecular Dirigida , Unión Proteica , Señales de Clasificación de Proteína , Proteínas de Unión al ARN/genética , Receptores Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Virus Zika/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-33046485

RESUMEN

Hepatitis B virus (HBV) mRNA metabolism is dependent upon host proteins PAPD5 and PAPD7 (PAPD5/7). PAPD5/7 are cellular, noncanonical, poly(A) polymerases (PAPs) whose main function is to oligoadenylate the 3' end of noncoding RNA (ncRNA) for exosome degradation. HBV seems to exploit these two ncRNA quality-control factors for viral mRNA stabilization, rather than degradation. RG7834 is a small-molecule compound that binds PAPD5/7 and inhibits HBV gene production in both tissue culture and animal study. We reported that RG7834 was able to destabilize multiple HBV mRNA species, ranging from the 3.5-kb pregenomic/precore mRNAs to the 2.4/2.1-kb hepatitis B virus surface protein (HBs) mRNAs, except for the smallest 0.7-kb X protein (HBx) mRNA. Compound-induced HBV mRNA destabilization was initiated by a shortening of the poly(A) tail, followed by an accelerated degradation process in both the nucleus and cytoplasm. In cells expressing HBV mRNA, both PAPD5/7 were found to be physically associated with the viral RNA, and the polyadenylating activities of PAPD5/7 were susceptible to RG7834 repression in a biochemical assay. Moreover, in PAPD5/7 double-knockout cells, viral transcripts with a regular length of the poly(A) sequence could be initially synthesized but became shortened in hours, suggesting that participation of PAPD5/7 in RNA 3' end processing, either during adenosine oligomerization or afterward, is crucial for RNA stabilization.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Animales , Virus de la Hepatitis B/genética , Proteínas de la Membrana , ARN Mensajero/genética , ARN Viral/genética , Ribonucleasas , Replicación Viral
7.
J Virol ; 92(7)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29343568

RESUMEN

Determinants and mechanisms of cell attachment and entry steer adeno-associated virus (AAV) in its utility as a gene therapy vector. Thus far, a systematic assessment of how diverse AAV serotypes engage their proteinaceous receptor AAVR (KIAA0319L) to establish transduction has been lacking, despite potential implications for cell and tissue tropism. Here, a large set of human and simian AAVs as well as in silico-reconstructed ancestral AAV capsids were interrogated for AAVR usage. We identified a distinct AAV capsid lineage comprised of AAV4 and AAVrh32.33 that can bind and transduce cells in the absence of AAVR, independent of the multiplicity of infection. Virus overlay assays and rescue experiments in nonpermissive cells demonstrate that these AAVs are unable to bind to or use the AAVR protein for entry. Further evidence for a distinct entry pathway was observed in vivo, as AAVR knockout mice were equally as permissive to transduction by AAVrh32.33 as wild-type mice upon systemic injection. We interestingly observe that some AAV capsids undergo a low level of transduction in the absence of AAVR, both in vitro and in vivo, suggesting that some capsids may have a multimodal entry pathway. In aggregate, our results demonstrate that AAVR usage is conserved among all primate AAVs except for those of the AAV4 lineage, and a non-AAVR pathway may be available to other serotypes. This work furthers our understanding of the entry of AAV, a vector system of broad utility in gene therapy.IMPORTANCE Adeno-associated virus (AAV) is a nonpathogenic virus that is used as a vehicle for gene delivery. Here, we have identified several situations in which transduction is retained in both cell lines and a mouse model in the absence of a previously defined entry receptor, AAVR. Defining the molecular determinants of the infectious pathway of this highly relevant viral vector system can help refine future applications and therapies with this vector.


Asunto(s)
Cápside/metabolismo , Dependovirus , Vectores Genéticos , Transducción Genética , Internalización del Virus , Animales , Línea Celular , Dependovirus/genética , Dependovirus/metabolismo , Ratones , Ratones Noqueados , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
8.
J Virol ; 91(11)2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28331092

RESUMEN

Monkeypox virus (MPXV) is a human pathogen that is a member of the Orthopoxvirus genus, which includes Vaccinia virus and Variola virus (the causative agent of smallpox). Human monkeypox is considered an emerging zoonotic infectious disease. To identify host factors required for MPXV infection, we performed a genome-wide insertional mutagenesis screen in human haploid cells. The screen revealed several candidate genes, including those involved in Golgi trafficking, glycosaminoglycan biosynthesis, and glycosylphosphatidylinositol (GPI)-anchor biosynthesis. We validated the role of a set of vacuolar protein sorting (VPS) genes during infection, VPS51 to VPS54 (VPS51-54), which comprise the Golgi-associated retrograde protein (GARP) complex. The GARP complex is a tethering complex involved in retrograde transport of endosomes to the trans-Golgi apparatus. Our data demonstrate that VPS52 and VPS54 were dispensable for mature virion (MV) production but were required for extracellular virus (EV) formation. For comparison, a known antiviral compound, ST-246, was used in our experiments, demonstrating that EV titers in VPS52 and VPS54 knockout (KO) cells were comparable to levels exhibited by ST-246-treated wild-type cells. Confocal microscopy was used to examine actin tail formation, one of the viral egress mechanisms for cell-to-cell dissemination, and revealed an absence of actin tails in VPS52KO- or VPS54KO-infected cells. Further evaluation of these cells by electron microscopy demonstrated a decrease in levels of wrapped viruses (WVs) compared to those seen with the wild-type control. Collectively, our data demonstrate the role of GARP complex genes in double-membrane wrapping of MVs necessary for EV formation, implicating the host endosomal trafficking pathway in orthopoxvirus infection.IMPORTANCE Human monkeypox is an emerging zoonotic infectious disease caused by Monkeypox virus (MPXV). Of the two MPXV clades, the Congo Basin strain is associated with severe disease, increased mortality, and increased human-to-human transmission relative to the West African strain. Monkeypox is endemic in regions of western and central Africa but was introduced into the United States in 2003 from the importation of infected animals. The threat of MPXV and other orthopoxviruses is increasing due to the absence of routine smallpox vaccination leading to a higher proportion of naive populations. In this study, we have identified and validated candidate genes that are required for MPXV infection, specifically, those associated with the Golgi-associated retrograde protein (GARP) complex. Identifying host targets required for infection that prevents extracellular virus formation such as the GARP complex or the retrograde pathway can provide a potential target for antiviral therapy.


Asunto(s)
Endosomas/metabolismo , Interacciones Huésped-Patógeno , Proteínas de la Membrana/genética , Monkeypox virus/fisiología , Proteínas de Transporte Vesicular/metabolismo , Actinas/efectos de los fármacos , Actinas/metabolismo , Animales , Benzamidas/farmacología , Transporte Biológico , Línea Celular , Genoma Humano , Glicosaminoglicanos/biosíntesis , Glicosaminoglicanos/genética , Glicosilfosfatidilinositoles/biosíntesis , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Haploidia , Humanos , Isoindoles/farmacología , Proteínas de la Membrana/metabolismo , Mpox/virología , Mutagénesis Insercional , Proteínas de Transporte Vesicular/genética , Carga Viral , Replicación Viral
9.
J Virol ; 91(18)2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28679762

RESUMEN

Adeno-associated virus (AAV) entry is determined by its interactions with specific surface glycans and a proteinaceous receptor(s). Adeno-associated virus receptor (AAVR) (also named KIAA0319L) is an essential cellular receptor required for the transduction of vectors derived from multiple AAV serotypes, including the evolutionarily distant serotypes AAV2 and AAV5. Here, we further biochemically characterize the AAV-AAVR interaction and define the domains within the ectodomain of AAVR that facilitate this interaction. By using a virus overlay assay, it was previously shown that the major AAV2 binding protein in membrane preparations of human cells corresponds to a glycoprotein with a molecular mass of 150 kDa. By establishing a purification procedure, performing further protein separation by two-dimensional electrophoresis, and utilizing mass spectrometry, we now show that this glycoprotein is identical to AAVR. While we find that AAVR is an N-linked glycosylated protein, this glycosylation is not a strict requirement for AAV2 binding or functional transduction. Using a combination of genetic complementation with deletion constructs and virus overlay assays with individual domains, we find that AAV2 functionally interacts predominantly with the second Ig-like polycystic kidney disease (PKD) repeat domain (PKD2) present in the ectodomain of AAVR. In contrast, AAV5 interacts primarily through the first, most membrane-distal, PKD domain (PKD1) of AAVR to promote transduction. Furthermore, other AAV serotypes, including AAV1 and -8, require a combination of PKD1 and PKD2 for optimal transduction. These results suggest that despite their shared dependence on AAVR as a critical entry receptor, different AAV serotypes have evolved distinctive interactions with the same receptor.IMPORTANCE Over the past decade, AAV vectors have emerged as leading gene delivery tools for therapeutic applications and biomedical research. However, fundamental aspects of the AAV life cycle, including how AAV interacts with host cellular factors to facilitate infection, are only partly understood. In particular, AAV receptors contribute significantly to AAV vector transduction efficiency and tropism. The recently identified AAV receptor (AAVR) is a key host receptor for multiple serotypes, including the most studied serotype, AAV2. AAVR binds directly to AAV2 particles and is rate limiting for viral transduction. Defining the AAV-AAVR interface in more detail is important to understand how AAV engages with its cellular receptor and how the receptor facilitates the entry process. Here, we further define AAV-AAVR interactions, genetically and biochemically, and show that different AAV serotypes have discrete interactions with the Ig-like PKD domains of AAVR. These findings reveal an unexpected divergence of AAVR engagement within these parvoviruses.

10.
J Hepatol ; 62(4): 863-70, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25463538

RESUMEN

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) associated macrophages accelerate tumor progression by growth factor release. Therefore, tumor-associated macrophages (TAM) and their initiated signaling cascades are potential therapeutic targets. Aiming at understanding anticancer effects of systemic HCC therapy, we investigated the impact of sorafenib on macrophage function, focusing on macrophage-related growth factor secretion. METHODS: Macrophage markers, cytokine and growth factor release were investigated in CSF-1 (M1) or GMCSF (M2) maturated monocyte-derived macrophages. Macrophages were treated with sorafenib (1.2-5.0 µg/ml) and culture supernatants were transferred to hepatoma cell cultures to assess growth propagation. Insulin-like growth factor (IGF) signaling was blocked with NVP-AEW541 to confirm the role of IGF-1 in macrophage-driven hepatoma cell propagation. Macrophage activation was followed by ELISA of serum soluble mCD163 in sorafenib-treated patients with HCC. RESULTS: Alternative macrophages (M2), which showed higher IGF-1 (p=0.022) and CD163 mRNA (p=0.032) expression compared to classical macrophages (M1), increased hepatoma growth. This effect was mediated by M2-conditioned culture media. In turn, sorafenib lowered mCD163 and IGF-1 release by M2 macrophages, which decelerated M2 macrophage driven HuH7 and HepG2 proliferation by 47% and 64%, respectively. IGF-receptor blockage with NVP-AEW541 reduced growth induction by M2-conditioned culture media in a dose dependent manner. A transient mCD163 reduction during sorafenib treatment indicated a coherent M2 macrophage inhibition in patients with HCC. CONCLUSIONS: Sorafenib alters macrophage polarization, reduces IGF-1-driven cancer growth in vitro and partially inhibits macrophage activation in vivo. Thus macrophage modulation might contribute to the anti-cancer activity of sorafenib. However, more efficient macrophage-directed therapies are required.


Asunto(s)
Carcinoma Hepatocelular , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Neoplasias Hepáticas , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos , Niacinamida/análogos & derivados , Compuestos de Fenilurea/farmacología , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antineoplásicos/farmacología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Niacinamida/farmacología , Receptores de Superficie Celular/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sorafenib , Quinasas raf/metabolismo
12.
Hepatology ; 57(6): 2358-68, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23424039

RESUMEN

UNLABELLED: Alternatively polarized macrophages (Mϕ) shape the microenvironment of hepatocellular carcinoma (HCC) and temper anticancer immune responses. We investigated if sorafenib alters the HCC microenvironment by restoring classical macrophage polarization and triggering tumor-directed natural killer (NK) cell responses. In vivo experiments were conducted with sorafenib (25 mg/kg)-treated C57BL/6 wildtype as well as hepatitis B virus (HBV) and lymphotoxin transgenic mice with and without HCC. Monocyte-derived Mϕ or tumor-associated macrophages (TAM) isolated from HCC tissue were treated with sorafenib (0.07-5.0 µg/mL) and cocultured with autologous NK cells. Mϕ and NK cell activation was analyzed by flow cytometry and killing assays, respectively. Cytokine and growth factor release was measured by enzyme-linked immunosorbent assay. Short-term administration of sorafenib triggered activation of hepatic NK cells in wildtype and tumor-bearing mice. In vitro, sorafenib sensitized Mϕ to lipopolysaccharide, reverted alternative Mϕ polarization and enhanced IL12 secretion (P = 0.0133). NK cells activated by sorafenib-treated Mϕ showed increased degranulation (15.3 ± 0.2% versus 32.0 ± 0.9%, P < 0.0001) and interferon-gamma (IFN-γ) secretion (2.1 ± 0.2% versus 8.0 ± 0.2%, P < 0.0001) upon target cell contact. Sorafenib-triggered NK cell activation was verified by coculture experiments using TAM. Sorafenib-treated Mϕ increased cytolytic NK cell function against K562, Raji, and HepG2 target cells in a dose-dependent manner. Neutralization of interleukin (IL)12 or IL18 as well as inhibition of the nuclear factor kappa B (NF-κB) pathway reversed NK cell activation in Mϕ/NK cocultures. CONCLUSION: Sorafenib triggers proinflammatory activity of TAM and subsequently induces antitumor NK cell responses in a cytokine- and NF-κB-dependent fashion. This observation is relevant for HCC therapy, as sorafenib is a compound in clinical use that reverts alternative polarization of TAM in HCC. (HEPATOLOGY 2013;57:2358-2368).


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Activación de Macrófagos/efectos de los fármacos , Niacinamida/análogos & derivados , Compuestos de Fenilurea/farmacología , Animales , Antineoplásicos/uso terapéutico , Apoptosis , Carcinoma Hepatocelular/inmunología , Citocinas/metabolismo , Evaluación Preclínica de Medicamentos , Humanos , Células Asesinas Naturales/efectos de los fármacos , Neoplasias Hepáticas/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Niacinamida/farmacología , Niacinamida/uso terapéutico , Compuestos de Fenilurea/uso terapéutico , Sorafenib
13.
PLoS One ; 19(2): e0297879, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394072

RESUMEN

Liquid chromatography purification of multiple recombinant proteins, in parallel, could catalyze research and discovery if the processes are fast and approach the robustness of traditional, "one-protein-at-a-time" purification. Here, we report an automated, four channel chromatography platform that we have designed and validated for parallelized protein purification at milligram scales. The device can purify up to four proteins (each with its own single column), has inputs for up to eight buffers or solvents that can be directed to any of the four columns via a network of software-driven valves, and includes an automated fraction collector with ten positions for 1.5 or 5.0 mL collection tubes and four positions for 50 mL collection tubes for each column output. The control software can be accessed either via Python scripting, giving users full access to all steps of the purification process, or via a simple-to-navigate touch screen graphical user interface that does not require knowledge of the command line or any programming language. Using our instrument, we report milligram-scale, parallelized, single-column purification of a panel of mammalian cell expressed coronavirus (SARS-CoV-2, HCoV-229E, HCoV-OC43, HCoV-229E) trimeric Spike and monomeric Receptor Binding Domain (RBD) antigens, and monoclonal antibodies targeting SARS-CoV-2 Spike (S) and Influenza Hemagglutinin (HA). We include a detailed hardware build guide, and have made the controlling software open source, to allow others to build and customize their own protein purifier systems.


Asunto(s)
Coronavirus Humano 229E , Coronavirus Humano OC43 , Animales , SARS-CoV-2 , Proteínas Recombinantes/metabolismo , Programas Informáticos , Lenguajes de Programación , Glicoproteína de la Espiga del Coronavirus/metabolismo , Mamíferos
14.
Nat Commun ; 14(1): 6245, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803001

RESUMEN

Genomic and proteomic screens have identified numerous host factors of SARS-CoV-2, but efficient delineation of their molecular roles during infection remains a challenge. Here we use Perturb-seq, combining genetic perturbations with a single-cell readout, to investigate how inactivation of host factors changes the course of SARS-CoV-2 infection and the host response in human lung epithelial cells. Our high-dimensional data resolve complex phenotypes such as shifts in the stages of infection and modulations of the interferon response. However, only a small percentage of host factors showed such phenotypes upon perturbation. We further identified the NF-κB inhibitor IκBα (NFKBIA), as well as the translation factors EIF4E2 and EIF4H as strong host dependency factors acting early in infection. Overall, our study provides massively parallel functional characterization of host factors of SARS-CoV-2 and quantitatively defines their roles both in virus-infected and bystander cells.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Proteómica , Pulmón , Células Epiteliales
15.
mBio ; 13(3): e0020522, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35502904

RESUMEN

Lymphocytic choriomeningitis virus (LCMV) is a well-studied mammarenavirus that can be fatal in congenital infections. However, our understanding of LCMV and its interactions with human host factors remains incomplete. Here, host determinants affecting LCMV infection were investigated through a genome-wide CRISPR knockout screen in A549 cells, a human lung adenocarcinoma line. We identified and validated a variety of novel host factors that play a functional role in LCMV infection. Among these, knockout of the sialomucin CD164, a heavily glycosylated transmembrane protein, was found to ablate infection with multiple LCMV strains but not other hemorrhagic mammarenaviruses in several cell types. Further characterization revealed a dependency of LCMV entry on the cysteine-rich domain of CD164, including an N-linked glycosylation site at residue 104 in that region. Given the documented role of LCMV with respect to transplacental human infections, CD164 expression was investigated in human placental tissue and placental cell lines. CD164 was found to be highly expressed in the cytotrophoblast cells, an initial contact site for pathogens within the placenta, and LCMV infection in placental cells was effectively blocked using a monoclonal antibody specific to the cysteine-rich domain of CD164. Together, this study identifies novel factors associated with LCMV infection of human tissues and highlights the importance of CD164, a sialomucin that previously had not been associated with viral infection. IMPORTANCE Lymphocytic choriomeningitis virus (LCMV) is a human-pathogenic mammarenavirus that can be fatal in congenital infections. Although frequently used in the study of persistent infections in the field of immunology, aspects of this virus's life cycle remain incomplete. For example, while viral entry has been shown to depend on a cell adhesion molecule, DAG1, genetic knockout of this gene allows for residual viral infection, implying that additional receptors can mediate cell entry. The significance of our study is the identification of host factors important for successful infection, including the sialomucin CD164, which had not been previously associated with viral infection. We demonstrated that CD164 is essential for LCMV entry into human cells and can serve as a possible therapeutic target for treatment of congenital infection.


Asunto(s)
Endolina , Coriomeningitis Linfocítica , Virus de la Coriomeningitis Linfocítica , Cisteína , Endolina/genética , Femenino , Humanos , Coriomeningitis Linfocítica/patología , Virus de la Coriomeningitis Linfocítica/patogenicidad , Placenta/virología , Embarazo , Sialomucinas
16.
bioRxiv ; 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36482965

RESUMEN

Endoplasmic reticulum (ER) aminopeptidase associated with antigen processing (ERAAP) trims peptide precursors in the ER for presentation by major histocompatibility (MHC)-I molecules to surveying CD8+ T-cells. This function allows ERAAP to regulate the nature and quality of the peptide repertoire and, accordingly, the resulting immune responses. We recently showed that infection with murine cytomegalovirus leads to a dramatic loss of ERAAP levels in infected cells. In mice, this loss is associated with the activation of QFL T-cells, a subset of T-cells that monitor ERAAP integrity and eliminate cells experiencing ERAAP dysfunction. In this study, we aimed to identify host factors that regulate ERAAP expression level and determine whether these could be manipulated during viral infections. We performed a CRISPR knockout screen and identified ERp44 as a factor promoting ERAAP retention in the ER. ERp44's interaction with ERAAP is dependent on the pH gradient between the ER and Golgi. We hypothesized that viruses that disrupt the pH of the secretory pathway interfere with ERAAP retention. Here, we demonstrate that expression of the Envelope (E) protein from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) leads to Golgi pH neutralization and consequently decrease of ERAAP intracellular levels. Furthermore, SARS-CoV-2-induced ERAAP loss correlates with its release into the extracellular environment. ERAAP's reliance on ERp44 and a functioning ER/Golgi pH gradient for proper localization and function led us to propose that ERAAP serves as a sensor of disturbances in the secretory pathway during infection and disease.

17.
Open Biol ; 12(12): 220227, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36514984

RESUMEN

The four dengue viruses (DENVs) have evolved multiple mechanisms to ensure its survival. Among these mechanisms is the ability to regulate its replication rate, which may contribute to avoiding premature immune activation that limit infection dissemination: DENVs associated with dengue epidemics have shown slower replication rate than pre-epidemic strains. Correspondingly, wild-type DENVs replicate more slowly than their clinically attenuated derivatives. To understand how DENVs 'make haste slowly', we generated and screened for DENV2 mutants with accelerated replication that also induced high type-I interferon (IFN) expression in infected cells. We chanced upon a single NS2B-I114T amino acid substitution, in an otherwise highly conserved amino acid residue. Accelerated DENV2 replication damaged host DNA as mutant infection was dependent on host DNA damage repair factors, namely RAD21, EID3 and NEK5. DNA damage induced cGAS/STING signalling and activated early type-I IFN response that inhibited infection dissemination. Unexpectedly, STING activation also supported mutant DENV replication in infected cells through STING-induced autophagy. Our findings thus show that DENV NS2B has multi-faceted role in controlling DENV replication rate and immune evasion and suggest that the dual role of STING in supporting virus replication within infected cells but inhibiting infection dissemination could be particularly advantageous for live attenuated vaccine development.


Asunto(s)
Virus del Dengue , Interferón Tipo I , Evasión Inmune , Replicación Viral , Interferón Tipo I/genética , Transducción de Señal
18.
Science ; 378(6615): eabn5648, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36074821

RESUMEN

Lysosomes are key degradative compartments of the cell. Transport to lysosomes relies on GlcNAc-1-phosphotransferase-mediated tagging of soluble enzymes with mannose 6-phosphate (M6P). GlcNAc-1-phosphotransferase deficiency leads to the severe lysosomal storage disorder mucolipidosis II (MLII). Several viruses require lysosomal cathepsins to cleave structural proteins and thus depend on functional GlcNAc-1-phosphotransferase. We used genome-scale CRISPR screens to identify lysosomal enzyme trafficking factor (LYSET, also named TMEM251) as essential for infection by cathepsin-dependent viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). LYSET deficiency resulted in global loss of M6P tagging and mislocalization of GlcNAc-1-phosphotransferase from the Golgi complex to lysosomes. Lyset knockout mice exhibited MLII-like phenotypes, and human pathogenic LYSET alleles failed to restore lysosomal sorting defects. Thus, LYSET is required for correct functioning of the M6P trafficking machinery and mutations in LYSET can explain the phenotype of the associated disorder.


Asunto(s)
COVID-19 , Lisosomas , Mucolipidosis , Proteínas , Animales , COVID-19/genética , Catepsinas/metabolismo , Humanos , Lisosomas/metabolismo , Manosa/metabolismo , Ratones , Ratones Noqueados , Mucolipidosis/genética , Mucolipidosis/metabolismo , Proteínas/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)
19.
Nat Genet ; 54(8): 1078-1089, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35879412

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a range of symptoms in infected individuals, from mild respiratory illness to acute respiratory distress syndrome. A systematic understanding of host factors influencing viral infection is critical to elucidate SARS-CoV-2-host interactions and the progression of Coronavirus disease 2019 (COVID-19). Here, we conducted genome-wide CRISPR knockout and activation screens in human lung epithelial cells with endogenous expression of the SARS-CoV-2 entry factors ACE2 and TMPRSS2. We uncovered proviral and antiviral factors across highly interconnected host pathways, including clathrin transport, inflammatory signaling, cell-cycle regulation, and transcriptional and epigenetic regulation. We further identified mucins, a family of high molecular weight glycoproteins, as a prominent viral restriction network that inhibits SARS-CoV-2 infection in vitro and in murine models. These mucins also inhibit infection of diverse respiratory viruses. This functional landscape of SARS-CoV-2 host factors provides a physiologically relevant starting point for new host-directed therapeutics and highlights airway mucins as a host defense mechanism.


Asunto(s)
COVID-19 , Animales , COVID-19/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Epigénesis Genética , Humanos , Ratones , Mucinas/genética , SARS-CoV-2
20.
Cell Rep ; 34(11): 108859, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33730579

RESUMEN

Hepatitis A virus (HAV) is a positive-sense RNA virus causing acute inflammation of the liver. Here, using a genome-scale CRISPR screen, we provide a comprehensive picture of the cellular factors that are exploited by HAV. We identify genes involved in sialic acid/ganglioside biosynthesis and members of the eukaryotic translation initiation factor complex, corroborating their putative roles for HAV. Additionally, we uncover all components of the cellular machinery for UFMylation, a ubiquitin-like protein modification. We show that HAV translation specifically depends on UFM1 conjugation of the ribosomal protein RPL26. Furthermore, we find that components related to the yeast Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) complex are required for viral translation independent of controlling viral poly(A) tails or RNA stability. Finally, we demonstrate that pharmacological inhibition of the TRAMP-like complex decreases HAV replication in hepatocyte cells and human liver organoids, thus providing a strategy for host-directed therapy of HAV infection.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genoma Humano , Virus de la Hepatitis A/fisiología , Hepatitis/virología , Interacciones Huésped-Patógeno , Complejos Multiproteicos/metabolismo , Proteínas/metabolismo , Ubiquitinación , Antivirales/metabolismo , Catálisis , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Hepatitis/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/virología , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Organoides/efectos de los fármacos , Organoides/metabolismo , Organoides/virología , Poliadenilación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , ARN Nucleotidiltransferasas/metabolismo , Estabilidad del ARN/efectos de los fármacos , Estabilidad del ARN/genética , ARN Viral/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae , Bibliotecas de Moléculas Pequeñas/farmacología , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA