Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Cell Sci ; 137(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38324353

RESUMEN

Fluorescence microscopy is essential for studying living cells, tissues and organisms. However, the fluorescent light that switches on fluorescent molecules also harms the samples, jeopardizing the validity of results - particularly in techniques such as super-resolution microscopy, which demands extended illumination. Artificial intelligence (AI)-enabled software capable of denoising, image restoration, temporal interpolation or cross-modal style transfer has great potential to rescue live imaging data and limit photodamage. Yet we believe the focus should be on maintaining light-induced damage at levels that preserve natural cell behaviour. In this Opinion piece, we argue that a shift in role for AIs is needed - AI should be used to extract rich insights from gentle imaging rather than recover compromised data from harsh illumination. Although AI can enhance imaging, our ultimate goal should be to uncover biological truths, not just retrieve data. It is essential to prioritize minimizing photodamage over merely pushing technical limits. Our approach is aimed towards gentle acquisition and observation of undisturbed living systems, aligning with the essence of live-cell fluorescence microscopy.


Asunto(s)
Inteligencia Artificial , Programas Informáticos , Microscopía Fluorescente
2.
J Cell Sci ; 136(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36727532

RESUMEN

Unwanted sample drift is a common issue that plagues microscopy experiments, preventing accurate temporal visualization and quantification of biological processes. Although multiple methods and tools exist to correct images post acquisition, performing drift correction of three-dimensional (3D) videos using open-source solutions remains challenging and time consuming. Here, we present a new tool developed for ImageJ or Fiji called Fast4DReg that can quickly correct axial and lateral drift in 3D video-microscopy datasets. Fast4DReg works by creating intensity projections along multiple axes and estimating the drift between frames using two-dimensional cross-correlations. Using synthetic and acquired datasets, we demonstrate that Fast4DReg can perform better than other state-of-the-art open-source drift-correction tools and significantly outperforms them in speed. We also demonstrate that Fast4DReg can be used to register misaligned channels in 3D using either calibration slides or misaligned images directly. Altogether, Fast4DReg provides a quick and easy-to-use method to correct 3D imaging data before further visualization and analysis.


Asunto(s)
Imagenología Tridimensional , Microscopía , Imagenología Tridimensional/métodos , Microscopía por Video
3.
Nat Methods ; 19(7): 829-832, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35654950

RESUMEN

TrackMate is an automated tracking software used to analyze bioimages and is distributed as a Fiji plugin. Here, we introduce a new version of TrackMate. TrackMate 7 is built to address the broad spectrum of modern challenges researchers face by integrating state-of-the-art segmentation algorithms into tracking pipelines. We illustrate qualitatively and quantitatively that these new capabilities function effectively across a wide range of bio-imaging experiments.


Asunto(s)
Algoritmos , Programas Informáticos , Procesamiento de Imagen Asistido por Computador/métodos
4.
J Microsc ; 294(3): 397-410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38691400

RESUMEN

In the dynamic landscape of scientific research, imaging core facilities are vital hubs propelling collaboration and innovation at the technology development and dissemination frontier. Here, we present a collaborative effort led by Global BioImaging (GBI), introducing international recommendations geared towards elevating the careers of Imaging Scientists in core facilities. Despite the critical role of Imaging Scientists in modern research ecosystems, challenges persist in recognising their value, aligning performance metrics and providing avenues for career progression and job security. The challenges encompass a mismatch between classic academic career paths and service-oriented roles, resulting in a lack of understanding regarding the value and impact of Imaging Scientists and core facilities and how to evaluate them properly. They further include challenges around sustainability, dedicated training opportunities and the recruitment and retention of talent. Structured across these interrelated sections, the recommendations within this publication aim to propose globally applicable solutions to navigate these challenges. These recommendations apply equally to colleagues working in other core facilities and research institutions through which access to technologies is facilitated and supported. This publication emphasises the pivotal role of Imaging Scientists in advancing research programs and presents a blueprint for fostering their career progression within institutions all around the world.


Asunto(s)
Investigadores , Humanos , Movilidad Laboral , Investigación Biomédica/métodos , Selección de Profesión
6.
J Cell Sci ; 127(Pt 10): 2161-73, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24610946

RESUMEN

Nestin, an intermediate filament protein and marker of undifferentiated cells, is expressed in several cancers. Nestin is important for neuronal survival and is a regulator of myogenesis but its function in malignancy is ambiguous. We show that nestin downregulation leads to a redistribution of phosphorylated focal adhesion kinase (pFAK, also known as PTK2) to focal adhesions and alterations in focal adhesion turnover. Nestin downregulation also leads to an increase in the protein levels of integrin α5ß1 at the cell membrane, activation of integrin ß1 and an increase in integrin clustering. These effects have striking consequences for cell invasion, as nestin downregulation leads to a significant increase in pFAK- and integrin-dependent matrix degradation and cell invasion. Our results indicate that nestin regulates the localisation and functions of FAK and integrin. Because nestin has been shown to be prevalent in a number of specific cancers, our observations have broad ramifications for the roles of nestin in malignant transformation.


Asunto(s)
Quinasa 1 de Adhesión Focal/metabolismo , Integrinas/metabolismo , Nestina/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Adhesión Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Humanos , Filamentos Intermedios/metabolismo , Filamentos Intermedios/patología , Masculino , Invasividad Neoplásica , Neoplasias de la Próstata/enzimología , Transducción de Señal
7.
Curr Opin Cell Biol ; 85: 102271, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897927

RESUMEN

Live imaging is a powerful tool, enabling scientists to observe living organisms in real time. In particular, when combined with fluorescence microscopy, live imaging allows the monitoring of cellular components with high sensitivity and specificity. Yet, due to critical challenges (i.e., drift, phototoxicity, dataset size), implementing live imaging and analyzing the resulting datasets is rarely straightforward. Over the past years, the development of bioimage analysis tools, including deep learning, is changing how we perform live imaging. Here we briefly cover important computational methods aiding live imaging and carrying out key tasks such as drift correction, denoising, super-resolution imaging, artificial labeling, tracking, and time series analysis. We also cover recent advances in self-driving microscopy.


Asunto(s)
Aprendizaje Profundo , Microscopía Fluorescente/métodos
8.
Cancer Res ; 80(7): 1414-1427, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32029551

RESUMEN

For maximal oncogenic activity, cellular MYC protein levels need to be tightly controlled so that they do not induce apoptosis. Here, we show how ubiquitin ligase UBR5 functions as a molecular rheostat to prevent excess accumulation of MYC protein. UBR5 ubiquitinates MYC and its effects on MYC protein stability are independent of FBXW7. Silencing of endogenous UBR5 induced MYC protein expression and regulated MYC target genes. Consistent with the tumor suppressor function of UBR5 (HYD) in Drosophila, HYD suppressed dMYC-dependent overgrowth of wing imaginal discs. In contrast, in cancer cells, UBR5 suppressed MYC-dependent priming to therapy-induced apoptosis. Of direct cancer relevance, MYC and UBR5 genes were coamplified in MYC-driven human cancers. Functionally, UBR5 suppressed MYC-mediated apoptosis in p53-mutant breast cancer cells with UBR5/MYC coamplification. Furthermore, single-cell immunofluorescence analysis demonstrated reciprocal expression of UBR5 and MYC in human basal-type breast cancer tissues. In summary, UBR5 is a novel MYC ubiquitin ligase and an endogenous rheostat for MYC activity. In MYC-amplified, and p53-mutant breast cancer cells, UBR5 has an important role in suppressing MYC-mediated apoptosis priming and in protection from drug-induced apoptosis. SIGNIFICANCE: These findings identify UBR5 as a novel MYC regulator, the inactivation of which could be very important for understanding of MYC dysregulation on cancer cells. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/7/1414/F1.large.jpg.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Mama/patología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Modelos Animales , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismo , RNA-Seq , Análisis de Matrices Tisulares , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA