Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 508(4): 1139-1144, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30554653

RESUMEN

New technique of detecting lateral heterogeneity of the plasma membrane of living cells by means of membrane-binding fluorescent dyes is proposed. The kinetics of dye incorporation into the membrane or its lateral diffusion inside the membrane is measured and decomposed into exponential components by means of the Maximum Entropy Method. Two distinct exponential components are obtained consistently in all cases for several fluorescent dyes, two different cell lines and in different types of experiments including spectroscopy, flow cytometry and fluorescence recovery after photobleaching. These components are attributed to the liquid-ordered and disordered phases in the plasma membrane of studied cells in their dynamic equilibrium.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Lípidos/química , Microdominios de Membrana/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Células HeLa , Humanos , Células Jurkat , Cinética , Espectrometría de Fluorescencia
2.
Biochim Biophys Acta Biomembr ; 1860(6): 1362-1371, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29573990

RESUMEN

The cell plasma membrane plays an essential role in programmed cell death of nucleated cells (apoptosis) and erythrocytes (eryptosis), and its changes due to loss of transmembrane asymmetry are quite similar. However, nucleated cells possess the network of intracellular membranes, which are missing in erythrocytes. Providing comparative studies with series of molecular probes, we observe dramatic differences in membrane lipid order in the course of apoptosis and eryptosis. In contrast to nucleated cells, in which a significant drop of the lipid order in the plasma membrane is observed, the erythrocyte membrane retains the relatively high level of the lipid order. Observation in nucleated cells of significant differences between inner and plasma membranes and detection of apoptotic bodies with different organization suggest that the decrease in the lipid order of their plasma membrane could be at least partially explained by the phospholipid and/or cholesterol exchange between membranes. Such features are absent in erythrocytes.


Asunto(s)
Apoptosis/fisiología , Membrana Celular/química , Calcio/análisis , Línea Celular , Disulfuros/farmacología , Células Epiteliales/fisiología , Células Epiteliales/ultraestructura , Eriptosis/fisiología , Eritrocitos/fisiología , Eritrocitos/ultraestructura , Células HeLa , Humanos , Ionomicina/farmacología , Células Jurkat , Microscopía Confocal , Naftoles/farmacología , Membrana Nuclear/química , beta-Ciclodextrinas/farmacología
3.
Biochim Biophys Acta Biomembr ; 1859(10): 2123-2132, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28784460

RESUMEN

In this research we investigate the connection between the cytoplasmic machinery of apoptosis and the plasma membrane organization by studying the coupling of caspase-3 activation and inhibition with PS exposure and the change of lipid order in plasma membrane sensed by a fluorescent membrane probe NR12S. First, we performed in silico molecular dynamics simulations, which suggest that the mechanism of response of NR12S to lipid order may combine both sensitivity to membrane polarity/hydration and change in the fluorophore orientation. Second, cellular studies revealed that upon triggering apoptosis with IPA-3 and camptothecin the NR12S response is similar to that observed after decrease of lipid order induced by cholesterol depletion, 7-ketocholesterol enrichment or sphingomyelin hydrolysis. NR12S response can be influenced by a caspase-3 inhibitor Z-DEVD-FMK. Flow cytometry data further indicate that the NR12S response correlates with the response of FITC-labeled DEVD-FMK peptide and GFP-labeled Annexin V on the whole time scale (0-24h) of apoptosis induction by camptothecin. We conclude that fine changes in lipid order observed by NR12S are coupled with early steps of cellular events in apoptosis.


Asunto(s)
Apoptosis/fisiología , Caspasa 3/metabolismo , Membrana Celular/metabolismo , Colorantes Fluorescentes/metabolismo , Lípidos de la Membrana/metabolismo , Anexina A5/metabolismo , Camptotecina/farmacología , Inhibidores de Caspasas/farmacología , Línea Celular Tumoral , Colesterol/metabolismo , Células HeLa , Humanos , Cetocolesteroles/metabolismo , Simulación de Dinámica Molecular , Oligopéptidos/farmacología , Esfingomielinas/metabolismo
4.
ACS Chem Biol ; 15(7): 1862-1873, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32543829

RESUMEN

We demonstrate the construction of wavelength λ-ratiometric images that allow visualizing the distribution of microscopic dynamics within living cells and tissues by using the newly developed principle of fluorescence response. The bent-to-planar motion in the excited state of incorporated fluorescence probes leads to elongation of the π-delocalization, resulting in microviscosity-dependent but polarity-insensitive interplay between well-separated blue and red bands in emission spectra. This allows constructing the exceptionally contrasted images of cellular dynamics. Moreover, the application of probes with increased affinity toward biological membranes allowed detecting the differences in dynamics between the plasma membrane and intracellular membrane structures. Such λ-ratiometric microviscosity imaging was extended for mapping the living tissues and observing their inflammation-dependent changes.


Asunto(s)
Membrana Celular/metabolismo , Colorantes Fluorescentes/química , Liposomas Unilamelares/química , Animales , Membrana Celular/química , Oído Externo/metabolismo , Colorantes Fluorescentes/efectos de la radiación , Células HeLa , Humanos , Luz , Masculino , Ratones , Microscopía Fluorescente , Conformación Molecular/efectos de la radiación , Glándulas Sebáceas/metabolismo , Tomografía Óptica , Viscosidad
5.
ACS Chem Biol ; 10(6): 1435-42, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25710589

RESUMEN

Detecting and imaging lipid microdomains (rafts) in cell membranes remain a challenge despite intensive research in the field. Two types of fluorescent probes are used for this purpose: one specifically labels a given phase (liquid ordered, Lo, or liquid disordered, Ld), while the other, being environment-sensitive (solvatochromic), stains the two phases in different emission colors. Here, we combined the two approaches by designing a phase-sensitive probe of the Ld phase and a quencher of the Ld phase. The former is an analogue of the recently developed Nile Red-based probe NR12S, bearing a bulky hydrophobic chain (bNR10S), while the latter is based on Black Hole Quencher-2 designed as bNR10S (bQ10S). Fluorescence spectroscopy of large unilamellar vesicles and microscopy of giant vesicles showed that the bNR10S probe can partition specifically into the Ld phase, while bQ10S can specifically quench the NR12S probe in the Ld phase so that only its fraction in the Lo phase remains fluorescent. Thus, the toolkit of two probes with quencher can specifically target Ld and Lo phases and identify their lipid order from the emission color. Application of this toolkit in living cells (HeLa, CHO, and 293T cell lines) revealed heterogeneity in the cell plasma membranes, observed as distinct probe environments close to the Lo and Ld phases of model membranes. In HeLa cells undergoing apoptosis, our toolkit showed the formation of separate domains of the Ld-like phase in the form of blebs. The developed tools open new possibilities in lipid raft research.


Asunto(s)
Colorantes Fluorescentes/química , Microdominios de Membrana/ultraestructura , Oxazinas/síntesis química , Animales , Apoptosis , Células CHO , Supervivencia Celular , Cricetulus , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/síntesis química , Células HEK293 , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Microdominios de Membrana/metabolismo , Oxazinas/química , Transición de Fase , Liposomas Unilamelares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA