Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2314320121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38954540

RESUMEN

Liquid-phase electron microscopy (LP-EM) imaging has revolutionized our understanding of nanosynthesis and assembly. However, the current closed geometry limits its application for open systems. The ubiquitous physical process of the coffee-ring phenomenon that underpins materials and engineering science remains elusive at the nanoscale due to the lack of experimental tools. We introduce a quartz nanopipette liquid cell with a tunable dimension that requires only standard microscopes. Depending on the imaging condition, the open geometry of the nanopipette allows the imaging of evaporation-induced pattern formation, but it can also function as an ordinary closed-geometry liquid cell where evaporation is negligible despite the nano opening. The nano coffee-ring phenomenon was observed by tracking individual nanoparticles in an evaporating nanodroplet created from a thin liquid film by interfacial instability. Nanoflows drive the assembly and disruption of a ring pattern with the absence of particle-particle correlations. With surface effects, nanoflows override thermal fluctuations at tens of nanometers, in which nanoparticles displayed a "drunken man trajectory" and performed work at a value much smaller than kBT.

2.
Small ; 20(1): e2304835, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37653619

RESUMEN

Photoelectrochemical (PEC) water splitting represents an attractive strategy to realize the conversion from solar energy to hydrogen energy, but severe charge recombination in photoanodes significantly limits the conversion efficiency. Herein, a unique BiVO4 (BVO) nanobowl (NB) heterojunction photoanode, which consists of [001]-oriented BiOCl underlayer and BVO nanobowls containing embedded BiOCl nanocrystals, is fabricated by nanosphere lithography followed by in situ transformation. Experimental characterizations and theoretical simulation prove that nanobowl morphology can effectively enhance light absorption while reducing carrier diffusion path. Density functional theory (DFT) calculations show the tendency of electron transfer from BVO to BiOCl. The [001]-oriented BiOCl underlayer forms a compact type II heterojunction with the BVO, favoring electron transfer from BVO through BiOCl to the substrate. Furthermore, the embedded BiOCl nanoparticles form a bulk heterojunction to facilitate bulk electron transfer. Consequently, the dual heterojunctions engineered BVO/BiOCl NB photoanode exhibits attractive PEC performance toward water oxidation with an excellent bulk charge separation efficiency of 95.5%, and a remarkable photocurrent density of 3.38 mA cm-2 at 1.23 V versus reversible hydrogen electrode, a fourfold enhancement compared to the flat BVO counterpart. This work highlights the great potential of integrating dual heterojunctions engineering and morphology engineering in fabricating high-performance photoelectrodes toward efficient solar conversion.

3.
Small ; : e2403970, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984738

RESUMEN

Self-assembly of nanoparticles into supercrystals represents a powerful approach to create unique and complex superstructures with fascinating properties and novel functions, but the complexity in spatial configuration, and the tunability in lattice structure are still quite limited compared to the crystals formed by atoms and molecules. Herein, shallowly concave gold nanoarrows with a unique concave-convex geometry are synthesized and employed as novel building blocks for shape-directed self-assembly of a wealth of complex 3D supercrystals with unprecedented configurations. The obtained diverse superstructures including six Interlocking-type supercrystals and three Packing-type supercrystals exhibit four types of Bravais lattices (i.e., tP, oI, tI, and oF) and six types of crystallographic space groups (i.e., Pmmm, I222, Pnnm, Ibam, I4/mmm, and Fmmm), which have not been documented in the mesoscale self-assembled systems. It has been revealed that the relative yield of different supercrystal structures is mainly determined by the packing density and deformability of the supercrystals, which are closely related to the tailored concavity of the nanoparticles and is affected by the particle concentration, thus allowing for programmable self-assembly into specific supercrystals through particle shape modulation. The concavity-enabled supercrystal engineering may open a new avenue toward unconventional nanoparticle superstructures with expanded complexity, tunability, and functionality.

4.
J Am Chem Soc ; 142(27): 11669-11673, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32543864

RESUMEN

We use liquid-phase transmission electron microscopy (TEM) to study self-assembly dynamics of charged gold nanoarrows (GNAs), which reveal an unexpected "colloid-atom duality". On one hand, they assemble following the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory for colloids when van der Waals attraction overruns slightly screened electrostatic repulsion. Due to concaveness in shape, GNAs adopt zipper motifs with lateral offset in their assembly matching with our modeling of inter-GNA interaction, which form into unconventional structures resembling degenerate crystals. On the other hand, further screening of electrostatic repulsion leads to merging of clusters assembled from GNAs, reminiscent of the coalescence growth mode in atomic crystals driven by minimization of surface energy, as we measure from the surface fluctuation of clusters. Liquid-phase TEM captures the initial formation of highly curved necks bridging the two clusters. Analysis of the real-time evolution of neck width illustrates the first-time observation of coalescence in colloidal assemblies facilitated by rapid surface diffusion of GNAs. We attribute the duality to the confluence of factors (e.g., nanoscale colloidal interaction, diffusional dynamics) that we access by liquid-phase TEM, taking turns to dominate at different conditions, which is potentially generic to the nanoscale. The atom aspect, in particular, can inspire utilization of atomic crystal synthesis strategies to encode structure and dynamics in nanoscale assembly.

5.
Chemistry ; 26(69): 16228-16235, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-32888220

RESUMEN

ß-Phase anhydrous guanine (ß-AG) crystals are one of the most widespread organic crystals to construct optical structures in organisms. Currently, no synthetic method is available that allows for producing guanine crystals with similar control in size, morphology, and crystallography as in biological ones. Herein, a facile one-step synthesis route to fabricate bio-inspired guanine microplatelets with (100) exposing planes in almost pure ß-phase is reported. The synthesis is based on a precipitation process of a guanine sodium hydroxide solution in formamide with poly(1-vinylpyrrolidone-co-vinyl acetate) as a morphological additive. Due to their uniform size (ca. 20 µm) and thickness (ca. 110 nm), the crystals represent the first synthetic guanine microplatelets that exhibit strong structural coloration and pearlescent lusters. Moreover, this synthesis route was utilized as a model system to investigate the effects of guanine analogues, including uric acid, hypoxanthine, xanthine, adenine, and guanosine, during the crystallization process. Our results indicate that the introduction of guanine analogues not only can reduce the required synthesis temperature but also provide a versatile control in crystal morphology and polymorph selection between the α-phase AG (α-AG) and ß-AG. Turbidity experiments show that the ß-AG microplatelets are formed with a fast precipitation rate in comparison to α-AG, suggesting that the formation of ß-AG crystals follows a kinetically driven process.

6.
Angew Chem Int Ed Engl ; 59(39): 17219-17224, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32495389

RESUMEN

The development of transition-metal-oxides (TMOs)-based bifunctional catalysts toward efficient overall water splitting through delicate control of composition and structure is a challenging task. Herein, the rational design and controllable fabrication of unique heterostructured inter-doped ruthenium-cobalt oxide [(Ru-Co)Ox ] hollow nanosheet arrays on carbon cloth is reported. Benefiting from the desirable compositional and structural advantages of more exposed active sites, optimized electronic structure, and interfacial synergy effect, the (Ru-Co)Ox nanoarrays exhibited outstanding performance as a bifunctional catalyst. Particularly, the catalyst showed a remarkable hydrogen evolution reaction (HER) activity with an overpotential of 44.1 mV at 10 mA cm-2 and a small Tafel slope of 23.5 mV dec-1 , as well as an excellent oxygen evolution reaction (OER) activity with an overpotential of 171.2 mV at 10 mA cm-2 . As a result, a very low cell voltage of 1.488 V was needed at 10 mA cm-2 for alkaline overall water splitting.

7.
Small ; : e1801352, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30027578

RESUMEN

An efficient photoanode based on CdS nanorod@SnO2 nanobowl (CdS NR@SnO2 NB) arrays is designed and fabricated by the preparation of SnO2 nanobowl arrays via nanosphere lithography followed by hydrothermal growth of CdS nanorods on the inner surface of the SnO2 nanobowls. A photoelectrochemical (PEC) device constructed by using this hierarchical CdS NR@SnO2 NB photoanode presents significantly enhanced performance with a photocurrent density of 3.8 mA cm-2 at 1.23 V versus a reversible hydrogen electrode (RHE) under AM1.5G solar light irradiation, which is about 2.5 times higher than that of CdS nanorod arrays. After coating with a thin layer of SiO2 , the photostability of the CdS NR@SnO2 NB arrays is greatly enhanced, resulting in a stable photoanode with a photocurrent density of 3.0 mA cm-2 retained at 1.23 V versus the RHE. The much improved performance of the CdS NR@SnO2 NB arrays toward PEC hydrogen generation can be ascribed to enlarged surface area arising from the hierarchical nanostructures, improved light harvesting owing to the NR@NB architecture containing multiple scattering centers, and enhanced charge separation/collection efficiency due to the favorable CdS-SnO2 heterojunction.

8.
Nanotechnology ; 28(14): 145101, 2017 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-28281469

RESUMEN

Long wavelength light-responsive drug delivery systems based on mesoporous silica nanoparticles (MSNs) have attracted much attention in the last few years. In this paper, a red light (660 nm)-responsive drug delivery system based on low-cost cyclodextrin (CD)-gated MSNs containing a photodynamic therapy (PDT) photosensitizer (Chlorin e6, Ce6) was developed for the first time. The drug release experiment in water demonstrated that with the irradiation of red light, Ce6 can be excited to generate singlet oxygen, which can further cleave the singlet oxygen sensitive linker to trigger the departure of CD and the release of cargo. Further in vitro release experiments confirmed that cargo can be released from MSNs with the irradiation of red light and spread into the entire cell. The relative low power density (0.5 W cm-2) of excitation light together with the short irradiation time (one-three min) result in a low light dose (30-90 J cm-2) for the drug delivery, contributing to their potential clinical applications.


Asunto(s)
Ciclodextrinas/química , Portadores de Fármacos/química , Nanopartículas/química , Dióxido de Silicio/química , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos/efectos de los fármacos , Células HeLa , Humanos , Luz , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Oxígeno Singlete/química
9.
Small ; 12(11): 1469-78, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26779803

RESUMEN

Heterostructured TiO2 nanorod@nanobowl (NR@NB) arrays consisting of rutile TiO2 nanorods grown on the inner surface of arrayed anatase TiO2 nanobowls are designed and fabricated as a new type of photoanodes for photoelectrochemical (PEC) water splitting. The unique heterostructures with a hierarchical architecture are readily fabricated by interfacial nanosphere lithography followed by hydrothermal growth. Owing to the two-dimensionally arrayed structure of anatase nanobowls and the nearly radial alignment of rutile nanorods, the TiO2 NR@NB arrays provide multiple scattering centers and hence exhibit an enhanced light harvesting ability. Meanwhile, the large surface area of the NR@NB arrays enhances the contact with the electrolyte while the nanorods offer direct pathways for fast electron transfer. Moreover, the rutile/anatase phase junction in the NR@NB heterostructure improves charge separation because of the facilitated electron transfer. Accordingly, the PEC measurements of the TiO2 NR@NB arrays on the fluoride-doped tin oxide (FTO) substrate show significantly enhanced photocatalytic properties for water splitting. Under AM1.5G solar light irradiation, the unmodified TiO2 NR@NB array photoelectrode yields a photocurrent density of 1.24 mA cm(-2) at 1.23 V with respect to the reversible hydrogen electrode, which is almost two times higher than that of the TiO2 nanorods grown directly on the FTO substrate.

10.
Nanotechnology ; 27(48): 485601, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27796275

RESUMEN

A strategy for the formation of magnetic Ni x Fe3-x O4 hollow nanospheres with very high specific surface areas was designed through a facile solvothermal method in mixed solvents of ethylene glycol and water in this work. The Ni/Fe ratios and the crystal phases of the Ni x Fe3-x O4 hollow nanocrystals can be readily tuned by changing the molar ratios of Ni to Fe in the precursors. An inside-out Ostwald ripening mechanism was proposed for the formation of uniform Ni x Fe3-x O4 hollow nanospheres. Moreover, the obtained Ni x Fe3-x O4 hollow nanospheres exhibited excellent adsorption capacity towards organic molecules such as Congo red in water. The maximum adsorption capacities of Ni x Fe3-x O4 hollow nanospheres for Congo red increase dramatically from 263 to 500 mg g-1 with the increase of the Ni contents (x) in Ni x Fe3-x O4 hollow nanospheres from 0.2 to 0.85. The synthesized Ni x Fe3-x O4 nanoparticles can be potentially applied for waste water treatment.

11.
Small ; 11(9-10): 1183-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25236881

RESUMEN

Unique Ag2 S-Ag heterostructured nanobowl arrays consisting of Ag2 S nanonets lying on Ag nanobowl arrays are fabricated by two-step nanosphere lithography at the gas-liquid interface. These Ag2 S-Ag heterostructured nanobowl arrays exhibit effective resistance switching behaviors and enhanced photoresponses, showing potential application in both electric devices and photocatalysis.

12.
Small ; 11(14): 1677-82, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25366272

RESUMEN

Unique concave microlens arrays (MLAs) made of calcite single crystals with tunable crystal orientations can be readily fabricated by template-assisted epitaxial growth in solution without additives under ambient conditions. While the non-birefringent calcite (001) MLA showed excellent imaging performance like brittlestar's microlens arrays, the birefringent calcite (104) MLA exhibited remarkable polarization-dependent optical properties.

13.
J Struct Biol ; 185(1): 1-14, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24291472

RESUMEN

Systematic studies on the Mg distributions, the crystal orientations, the formation mechanisms and the mechanical properties of biogenic high-Mg calcites in different marine organisms were summarized in detail in this review. The high-Mg calcites in the hard tissues of marine organisms mentioned generally own a few common features as follows. Firstly, the Mg distribution is not uniform in most of the minerals. Secondly, high-Mg calcite biominerals are usually composed of nanoparticles that own almost the same crystallographic orientations and thus they behave like single crystals or mesocrystals. Thirdly, the formation of thermodynamically unstable high-Mg calcites in marine organisms under mild conditions is affected by three key factors, that is, the formation of amorphous calcium (magnesium) carbonate precursor, the control of polymorph via biomolecules and the high Mg/Ca ratios in modern sea. Lastly, the existence of Mg ions in the Mg-containing calcite may improve the mechanical properties of biogenic minerals. Furthermore, the key progress in the synthesis of high-Mg calcites in the laboratory based on the formation mechanisms of the biogenic high-Mg calcites was reviewed. Many researchers have realized the synthesis of high-Mg calcites in the laboratory under ambient conditions with the help of intermediate amorphous phase, mixed solvents, organic/inorganic surfaces and soluble additives. Studies on the structural analysis and formation mechanisms of thermodynamically unstable biogenic high-Mg calcite minerals may shed light on the preparation of functional materials with enhanced mechanical properties.


Asunto(s)
Carbonato de Calcio/metabolismo , Magnesio/metabolismo , Animales , Calcificación Fisiológica/fisiología , Cristalografía , Minerales/metabolismo , Termodinámica
14.
Chemistry ; 20(15): 4264-72, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24644237

RESUMEN

Besides studies on the mineralization process, research on the demineralization of minerals provides another way to understand the crystallization mechanism of biominerals and fabricate crystals with complicated morphologies. The formation of ordered arrays of c-axis-oriented calcite microneedles with a tri-symmetric structure and lengths of more than 20 µm was realized on a large scale for the first time through anisotropic dissolution of calcite substrates in undersaturated aqueous solution in the presence of ammonium salts. The lengths and the aspect ratios of the calcite microneedles can be tuned by simply changing the concentrations of the ammonium salts and the dissolution time. The shape of the transverse cross sections of the calcite microneedles obtained in the presence of NH4 Cl and NH4 Ac is almost regularly triangular. The tri-symmetric transverse cross-section geometry of the calcite microneedles could be attributed to the tri-symmetric feature of rhombohedral calcite atomic structures, the synergetic interactions between electrostatic interaction of ammonium ions and dangling surface carbonate groups, and the ion incorporation of halide ions.


Asunto(s)
Carbonato de Calcio/química , Compuestos de Amonio/química , Iones/química , Nanoestructuras/química , Electricidad Estática , Agua/química , Difracción de Rayos X
15.
Opt Express ; 21(15): 17831-8, 2013 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-23938656

RESUMEN

Iridescent colloidal crystal coatings with variable structural colors were fabricated by incorporating carbon black nanoparticles (CB-NPs) into the voids of polystyrene (PS) colloidal crystals. The structural color of the colloid crystal coatings was not only greatly enhanced after the composition but also varied with observation angles. By changing the diameter of monodisperse PS colloids in the composites, colloidal crystal coatings with three primary colors for additive or subtractive combination were obtained. After incorporation of the PS/CB-NPs hybrid coatings into polydimethylsiloxane (PDMS) matrix, manmade opal jewelry with variable iridescent colors was made facilely.


Asunto(s)
Coloides/química , Color , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Refractometría/instrumentación , Diseño Asistido por Computadora , Cristalización/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Dispersión de Radiación
16.
Adv Mater ; 35(18): e2300195, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36813539

RESUMEN

Although zinc-based batteries are promising candidates for eco-friendly and cost-effective energy storage devices, their performance is severely retarded by dendrite formation. As the simplest zinc compounds, zinc chalcogenides, and halides are individually applied as a Zn protection layer due to high zinc ion conductivity. However, the mixed-anion compounds are not studied, which constrains the Zn2+ diffusion in single-anion lattices to their own limits. A heteroanionic zinc ion conductor (Zny O1- x Fx ) coating layer is designed by in situ growth method with tunable F content and thickness. Strengthened by F aliovalent doping, the Zn2+ conductivity is enhanced within the wurtzite motif for rapid lattice Zn migration. Zny O1- x Fx also affords zincophilic sites for oriented superficial Zn plating to suppress dendrite growth. Therefore, Zny O1- x Fx -coated anode exhibits a low overpotential of 20.4 mV for 1000 h cycle life at a plating capacity of 1.0 mA h cm-2 during symmetrical cell test. The MnO2 //Zn full battery further proves high stability of 169.7 mA h g-1 for 1000 cycles. This work may enlighten the mixed-anion tuning for high-performance Zn-based energy storage devices.

17.
Nanotechnology ; 23(23): 235604, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22595896

RESUMEN

A rapid one-pot synthesis of hierarchical ZnO hollow spheres consisting of nanoparticles was realized by a facile microwave-assisted solvothermal method using ethanol as the solvent. According to the time-dependent observation of the formation process, a tentative mechanism based on ethyl acetate bubble-templating self-assembly of ZnO nanoparticles was proposed for the formation of the ZnO hollow spheres. Compared with the conventional heating, the microwave irradiation resulted in a significantly shortened reaction time (within 30 min) and considerably improved quality of the ZnO hollow spheres, such as narrower size distribution and more regular morphology, owing to the high heating rate and thus the accelerated reaction rate. It was shown that the microwave-assisted synthesis of ZnO nanostructures with tunable morphologies can be realized by judicious selection of appropriate solvents. The obtained ZnO hollow spheres exhibited an excellent adsorption capacity towards Cr(VI) ions in water because of their high surface area for adsorption and a good ability to preserve the accessible surface.


Asunto(s)
Cromo/química , Cromo/aislamiento & purificación , Nanosferas/química , Nanosferas/ultraestructura , Nanoestructuras/química , Óxido de Zinc/química , Óxido de Zinc/efectos de la radiación , Adsorción , Cristalización/métodos , Ensayo de Materiales , Microondas , Conformación Molecular/efectos de la radiación , Nanosferas/efectos de la radiación , Nanoestructuras/efectos de la radiación , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Porosidad/efectos de la radiación , Propiedades de Superficie/efectos de la radiación
18.
Phys Chem Chem Phys ; 14(7): 2255-63, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22240878

RESUMEN

The formation mechanism of the thermodynamically unstable calcite phase, very high Mg calcite, in biological organisms such as sea urchin or corallina algae has been an enigma for a very long time. In contrast to conventional methods such as KBr pellet Fourier Transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD), FTIR microspectroscopy (FTIRM) provides additional information about a local disorder such as an amorphous phase or the occlusion of Mg ions in the calcite lattice. In this work, we characterise for the first time systematically synthetic and biogenic Mg-containing calcium carbonate samples (especially sea urchin teeth--SUT) in detail by using two FTIRM instruments and compare these samples with KBr pellet FTIR measurements. Furthermore, we present spectra from geogenic calcite and dolomite minerals, recorded with both FTIRM systems, as well as KBr pellet FTIR spectra as references. We analyse the spectra by applying multi-peak curve fitting on the in-plane-bending (ν(4)) and out-of-plane (ν(2)) bands. Based on the obtained results we attribute the two singlet bands at ∼860-865 cm(-1) and ∼695-704 cm(-1) observed in the SUT FTIRM spectra to the existence of amorphous calcium carbonate (ACC), and report for the first time the existence of ACC at the mature end of SUT. In the other three studied biominerals, however, we did not find any ACC. Also, based on the FTIRM results, we observe that not only ν(4), but also ν(2) shifts to higher wavenumbers if more calcium ions are replaced by magnesium ions in the calcite lattices.


Asunto(s)
Carbonato de Calcio/química , Magnesio/química , Bromuros/química , Compuestos de Potasio/química , Espectroscopía Infrarroja por Transformada de Fourier
19.
ACS Appl Mater Interfaces ; 14(48): 53808-53818, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36414242

RESUMEN

Formamidinium-cesium (FA-Cs) perovskites are an attractive candidate for perovskite solar cells (PSCs) with high stability, but they tend to suffer from high intrinsic defect density, especially at grain boundaries. Herein, a common heterocyclic conjugated molecule, orotic acid (ORO), was employed as a novel bifunctional additive to simultaneously achieve crystallization regulation and defect passivation of an FA-Cs perovskite toward efficient and stable PSCs. ORO was introduced to an FA-Cs perovskite precursor solution as an effective coordination-induced crystallization regulator to improve the grain size and crystallinity. Furthermore, under the assistance of π electrons, its carboxyl group bonded with undercoordinated Pb2+ defects at grain boundaries, and it was also able to form hydrogen bonds with undercoordinated I- defects, thus significantly reducing defect density. The average power conversion efficiency of the produced PSC devices with the ORO additive was promoted from 17.81% for the control PSCs to 19.32%, and a champion efficiency of 20.62% with negligible hysteresis was achieved. Additionally, the optimized devices exhibited high resistance to moisture incursion, leading to decent environmental stability. This work provides a convenient yet efficient approach to improve crystallization and passivate defects toward PSCs with enhanced efficiency and stability.

20.
Nanoscale ; 14(34): 12196-12218, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-35968835

RESUMEN

Developing efficient, nanostructured electrocatalysts with the desired compositions and structures is of great significance for improving the efficiency of water splitting toward hydrogen production. In this regard, metal-organic framework (MOF) derived nanoarrays have attracted great attention as promising electrocatalysts because of their diverse compositions and adjustable structures. In this review, the recent progress in MOF-derived nanoarrays for electrochemical water splitting is summarized, highlighting the structural design of the MOF-derived nanoarrays and the electrocatalytic performance of the derived composite carbon materials, oxides, hydroxides, sulfides, and phosphides. In particular, the structure-performance relationships of the MOF-derived nanoarrays and the modulation strategies toward enhanced catalytic activity for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are discussed, providing insights into the development of advanced catalysts for the HER and OER. The challenges and prospects in this promising field for future industrial applications are also addressed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA