Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmacol Res ; 207: 107332, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39089398

RESUMEN

The endoplasmic reticulum (ER) plays a pivotal role in protein folding and secretion, Ca2+ storage, and lipid synthesis in eukaryotic cells. When the burden of protein synthesis and folding required to be handled exceeds the processing capacity of the ER, the accumulation of misfolded/unfolded proteins triggers ER stress. In response to short-term ER stress, the unfolded protein response (UPR) is activated to allow cells to survive. When ER stress is severe and sustained, it typically provokes cell death through multiple approaches. It is well documented that ER stress and metabolic deregulation are functionally intertwined, both are considered contributing factors to the pathogenesis of liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), ischemia/reperfusion (I/R) injury, viral hepatitis, liver fibrosis, and hepatocellular carcinoma (HCC). Hepatocytes are rich in smooth and rough ER, which harbor metabolic enzymes that are capable of sensing alterations in various nutritional status and external stimuli. Extensive research has focused on the molecular mechanism linking ER stress with metabolic enzymes. The purpose of this review is to summarize the current knowledge regarding the effects of ER stress on metabolic enzymes in various liver diseases and to provide potential therapeutic strategies for chronic liver diseases via targeting UPR.


Asunto(s)
Estrés del Retículo Endoplásmico , Hepatopatías , Respuesta de Proteína Desplegada , Humanos , Animales , Hepatopatías/metabolismo , Hepatopatías/enzimología , Retículo Endoplásmico/metabolismo
2.
BMC Public Health ; 24(1): 1460, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822299

RESUMEN

BACKGROUND: The role of diet choline in atherosclerotic cardiovascular disease (ASCVD) is uncertain. Findings from animal experiments are contradictory while there is a lack of clinical investigations. This study aimed to investigate the association between choline intake and ASCVD based on individuals from the National Health and Nutrition Examination Survey (NHANES) database. METHODS: This cross-sectional study was conducted in 5525 individuals from the NHANES between 2011 and 2018. Participants were categorized into the ASCVD (n = 5015) and non-ASCVD (n = 510) groups. Univariable and multivariable-adjusted regression analyses were employed to investigate the relationship between diet choline and pertinent covariates. Logistic regression analysis and restricted cubic spline analysis were used to evaluate the association between choline intake and ASCVD. RESULTS: ASCVD participants had higher choline intake compared to those without ASCVD. In the higher tertiles of choline intake, there was a greater proportion of males, married individuals, highly educated individuals, and those with increased physical activity, but a lower proportion of smokers and drinkers. In the higher tertiles of choline intake, a lower proportion of individuals had a history of congestive heart failure and stroke. After adjusting for age, gender, race, ethnicity, and physical activity, an inverse association between choline intake and heart disease, stroke, and ASCVD was found. A restricted cubic spline analysis showed a mirrored J-shaped relationship between choline and ASCVD, stroke and congestive heart failure in males. There was no association between dietary choline and metabolic syndrome. CONCLUSION: An inverse association was observed between choline intake and ASVCD among U.S. adults. Further large longitudinal studies are needed to test the causal relationship of choline and ASVCD.


Asunto(s)
Aterosclerosis , Colina , Dieta , Encuestas Nutricionales , Humanos , Colina/administración & dosificación , Masculino , Femenino , Estudios Transversales , Persona de Mediana Edad , Estados Unidos/epidemiología , Aterosclerosis/epidemiología , Dieta/estadística & datos numéricos , Adulto , Anciano , Enfermedades Cardiovasculares/epidemiología
3.
Environ Toxicol ; 39(2): 643-656, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37565732

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a highly aggressive cancer with heavy mortality rates and poor prognosis. Cellular senescence exerts a pivotal influence on the development and progression of various cancers. However, the underlying effect of cellular senescence on the outcomes of patients with GBM remains to be elucidated. METHODS: Transcriptome RNA sequencing data with clinical information and single-cell sequencing data of GBM cases were obtained from CGGA, TCGA, and GEO (GSE84465) databases respectively. Single-sample gene set enrichment analysis (ssGSEA) analysis was utilized to calculate the cellular senescence score. WGCNA analysis was employed to ascertain the key gene modules and identify differentially expressed genes (DEGs) associated with the cellular senescence score in GBM. The prognostic senescence-related risk model was developed by least absolute shrinkage and selection operator (LASSO) regression analyses. The immune infiltration level was calculated by microenvironment cell populations counter (MCPcounter), ssGSEA, and xCell algorithms. Potential anti-cancer small molecular compounds of GBM were estimated by "oncoPredict" R package. RESULTS: A total of 150 DEGs were selected from the pink module through WGCNA analysis. The risk-scoring model was constructed based on 5 cell senescence-associated genes (CCDC151, DRC1, C2orf73, CCDC13, and WDR63). Patients in low-risk group had a better prognostic value compared to those in high-risk group. The nomogram exhibited excellent predictive performance in assessing the survival outcomes of patients with GBM. Top 30 potential anti-cancer small molecular compounds with higher drug sensitivity scores were predicted. CONCLUSION: Cellular senescence-related genes and clusters in GBM have the potential to provide valuable insights in prognosis and guide clinical decisions.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Análisis de Secuencia de ARN , Senescencia Celular/genética , Microambiente Tumoral
4.
Environ Res ; 238(Pt 2): 117112, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717807

RESUMEN

Glioma is the most common primary malignant tumor of the nervous system that starts in the glial cells. Its high invasiveness and recurrence pose major challenges to its effective treatment. Ferroptosis is a new type of programmed cell death characterized by intracellular iron overload and accumulation of lipid peroxides. Existing studies have demonstrated the efficacy of targeted ferroptosis therapy in the treatment of glioma. In this study, folic acid (FA)-modified layered double hydroxide loaded with simvastatin (SIM), a ferroptosis drug, was used to prepare a novel ferroptosis nanodrug (FA-LDH@SIM). The prepared nanodrug improved the therapeutic effect of SIM on glioma. Compared with free SIM, FA-LDH@SIM showed greater cytotoxicity, significantly inhibited glioma cell proliferation, and significantly inhibited glioma invasion and migration ability. Furthermore, SIM could induce changes in certain ferroptosis indicators, including increased intracellular LPO, ROS and MDA level, decreased GSH production, increased divalent iron level, and changes in mitochondrial morphology. Further experiments revealed that SIM induced ferroptosis in tumor cells by down-regulating HMGCR expression and inhibiting the mevalonate pathway to down-regulate GPX4 expression. In addition, the FA-LDH@SIM group significantly inhibited tumor growth after treatment in the animal glioma model. These results indicate that the FA-LDH@SIM nanodrug delivery system exhibits excellent anti-tumor effects both in vitro and in vivo, and is an effective method for the treatment of glioma.


Asunto(s)
Ferroptosis , Glioma , Animales , Simvastatina/farmacología , Simvastatina/uso terapéutico , Línea Celular Tumoral , Hidróxidos
5.
Mol Cancer ; 21(1): 204, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307808

RESUMEN

Brain cancer is regarded among the deadliest forms of cancer worldwide. The distinct tumor microenvironment and inherent characteristics of brain tumor cells virtually render them resistant to the majority of conventional and advanced therapies. Oxidative stress (OS) is a key disruptor of normal brain homeostasis and is involved in carcinogenesis of different forms of brain cancers. Thus, antioxidants may inhibit tumorigenesis by preventing OS induced by various oncogenic factors. Antioxidants are hypothesized to inhibit cancer initiation by endorsing DNA repair and suppressing cancer progression by creating an energy crisis for preneoplastic cells, resulting in antiproliferative effects. These effects are referred to as chemopreventive effects mediated by an antioxidant mechanism. In addition, antioxidants minimize chemotherapy-induced nonspecific organ toxicity and prolong survival. Antioxidants also support the prooxidant chemistry that demonstrate chemotherapeutic potential, particularly at high or pharmacological doses and trigger OS by promoting free radical production, which is essential for activating cell death pathways. A growing body of evidence also revealed the roles of exogenous antioxidants as adjuvants and their ability to reverse chemoresistance. In this review, we explain the influences of different exogenous and endogenous antioxidants on brain cancers with reference to their chemopreventive and chemotherapeutic roles. The role of antioxidants on metabolic reprogramming and their influence on downstream signaling events induced by tumor suppressor gene mutations are critically discussed. Finally, the review hypothesized that both pro- and antioxidant roles are involved in the anticancer mechanisms of the antioxidant molecules by killing neoplastic cells and inhibiting tumor recurrence followed by conventional cancer treatments. The requirements of pro- and antioxidant effects of exogenous antioxidants in brain tumor treatment under different conditions are critically discussed along with the reasons behind the conflicting outcomes in different reports. Finally, we also mention the influencing factors that regulate the pharmacology of the exogenous antioxidants in brain cancer treatment. In conclusion, to achieve consistent clinical outcomes with antioxidant treatments in brain cancers, rigorous mechanistic studies are required with respect to the types, forms, and stages of brain tumors. The concomitant treatment regimens also need adequate consideration.


Asunto(s)
Antioxidantes , Neoplasias Encefálicas , Humanos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Carcinogénesis , Microambiente Tumoral
6.
Mamm Genome ; 27(1-2): 1-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26577493

RESUMEN

So far, epidemiological studies have been performed to investigate the association of CDKN2A/B rs4977756 polymorphism and glioma risk. However, the results from different studies remain inconsistent. To clarify these conflicts and to quantitatively evaluate the effect of rs4977756 polymorphism on glioma risk, a meta-analysis was conducted using relevant published clinical studies about rs4977756 polymorphisms and glioma risk. Relevant studies concerning the association between rs4977756 polymorphism and risk of glioma were included in this meta-analysis. Odds ratio (OR) and 95 % confidence interval (CI) were calculated under fixed or random effects models when appropriate. Subgroup analyses were performed by race. This meta-analysis included 13 studies with a total of 8129 cases and 15,858 controls. The pooled results showed that there was an obvious association of CDKN2A/B rs4977756 polymorphism with risk of glioma in all four comparison models (dominant model/AG + GG vs. AA: OR = 1.36, 95 %CI = 1.20-1.54, p < 0.01; heterozygote comparison/AG vs. AA: OR = 1.31, 95 %CI = 1.12-1.53, p < 0.01; homozygote comparison/GG versus AA: OR = 1.49, 95 %CI = 1.36-1.64, p < 0.01; additive model/G vs. A: OR = 1.23, 95 %CI = 1.18-1.28, p < 0.01, respectively). For the subgroup analyses of ethnicities, similar results were observed in Caucasians. However, the association was not found between rs4977756 polymorphism and the risk of glioma in all models for the Asian studies. The CDKN2A/B rs4977756 polymorphism is obvious increase the risk of glioma in Caucasians. Future studies are needed to confirm the results in other ethnic populations.


Asunto(s)
Neoplasias Encefálicas/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Predisposición Genética a la Enfermedad , Glioma/genética , Polimorfismo de Nucleótido Simple , Pueblo Asiatico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/etnología , Neoplasias Encefálicas/patología , Estudios de Casos y Controles , Expresión Génica , Glioma/diagnóstico , Glioma/etnología , Glioma/patología , Heterocigoto , Humanos , Modelos Genéticos , Oportunidad Relativa , Riesgo , Población Blanca
7.
PeerJ ; 12: e17631, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006026

RESUMEN

Background: Human olfactory receptors (ORs) account for approximately 60% of all human G protein-coupled receptors. The functions of ORs extend beyond olfactory perception and have garnered significant attention in tumor biology. However, a comprehensive pan-cancer analysis of ORs in human cancers is lacking. Methods: Using data from public databases, such as HPA, TCGA, GEO, GTEx, TIMER2, TISDB, UALCAN, GEPIA2, and GSCA, this study investigated the role of olfactory receptor family 7 subfamily A member 5 (OR7A5) in various cancers. Functional analysis of OR7A5 in LGG and GBM was performed using the CGGA database. Molecular and cellular experiments were performed to validate the expression and biological function of OR7A5 in gliomas. Results: The results revealed heightened OR7A5 expression in certain tumors, correlating with the expression levels of immune checkpoints and immune infiltration. In patients with gliomas, the expression levels of OR7A5 were closely associated with adverse prognosis, 1p/19p co-deletion status, and wild-type IDH status. Finally, in vitro experiments confirmed the inhibitory effect of OR7A5 knockdown on the proliferative capacity of glioma cells and on the expression levels of proteins related to lipid metabolism. Conclusion: This study establishes OR7A5 as a novel biomarker, potentially offering a novel therapeutic target for gliomas.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Glioma , Receptores Odorantes , Humanos , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/patología , Glioma/inmunología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/inmunología , Línea Celular Tumoral , Pronóstico , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica
8.
Heliyon ; 10(14): e34215, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39092253

RESUMEN

Shezhi Huangling Decoction (SHD) has been proven clinically effective in regulating metabolic and immune homeostasis in the treatment of glioma. The investigation aimed to deconstruct the active constituents and mechanisms of SHD. Effects of SHD on malignant characteristics of HS683 and KNS89 cells have been investigated by CCK-8, clone formation, flow cytometry, and Transwell assays. A mouse xenograft model was established to assess the effect of SHD or SHD + temozolomide (TMZ) in vivo. A total of 461 constituents were found from SHD in UPLC/Q-TOF-MS/MS analysis. Functional enrichment analysis showed that pathway in cancer, proteoglycans in cancer, regulation of epithelial cell proliferation, inflammation/immune, gliogenesis, brain development, cell adhesion, and autophagy could participate in the treatment of SHD. Additionally, 9 hub genes (AKT1, TP53, CTNNB1, STAT3, EGFR, VEGFA, PIK3CA, ERBB2, and HIF1A) were identified as hub genes. Moreover, we found that SHD may greatly reduce the migration and accelerate apoptosis of HS683 and KNS89 cells. Additionally, SHD coordinates TMZ to restrict tumor growth were found in the mice. Our results suggest that the malignant behaviors of glioma cells are suppressed by SHD and the mechanism may be closing on the inhibition of the PI3K/Akt-HIF1A axis. SHD may serve as a synergistic therapeutic choice for TMZ to suppress glioblastoma growth.

9.
World Neurosurg ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053852

RESUMEN

OBJECTIVE: To develop and validate a clinical-radiomics nomogram for predicting early ischemic stroke risk in patients who sustain a transient ischemic attack (TIA). METHODS: A retrospective training dataset (n = 76) and a prospective validation dataset (n = 34) of patients with TIA were studied. Image processing was performed using ITK-snap and Artificial Intelligent Kit. Radiomics features were selected in R. A nomogram predicting recurrent TIA/stroke in 90 days as a recurrent ischemic event was established. Model performance was assessed by computing the receiver operating characteristic curve and decision curve analysis (DCA). RESULTS: We found a higher proportion of diabetes and hypertension in the patients with recurrent TIA compared with the stable patients in both the training and validation datasets (P < 0.05). Recurrent patients had significantly higher ABCD2 scores and plaque scores compared to stable patients. ABCD2 score and necrotic/lipid core area were independent risk factors for recurrent ischemic events (odds ratio [OR], 2.75; 95% confidence interval [CI], 1.47-6.40; and OR, 1.20; 95% CI, 1.07-1.41, respectively). The radiomics model had area under the curve values of 0.737 (95% CI, 0.715-0.878) in the training dataset and 0.899 (95% CI, 0.706-0.936) in the validation dataset, which was superior to the ABCD2 score and plaque model for predicting stroke recurrence (P < 0.05). The nomogram predicting recurrent ischemic events was 0.923 (95% CI, 0.895-0.978) in the training dataset and 0.935 (95% CI, 0.830-0.959) in the validation dataset. DCA confirmed the clinical value of this nomogram. CONCLUSIONS: The nomogram, based on clinical ABCD2 score, carotid plaque components and radiomics score, shows good performance in predicting the risk of recurrent ischemic events in patients with TIA.

10.
Phytomedicine ; 132: 155867, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39047415

RESUMEN

BACKGROUND: Xiaoke Bitong capsule (XBC) is a crude herbal compound believed to tonify qi, improve blood circulation, and alleviate blood stasis. It has been used as an herbal formula for the prevention and treatment of diabetic peripheral neuropathy (DPN) under the guidance of traditional Chinese medicine (TCM). However, the pharmacological mechanisms by which XBC ameliorates DPN remain poorly understood. The interaction between pro-inflammatory factors and the activation of tumor necrosis factor (TNF) plays a critical role in the underlying mechanisms of DPN. XBC may protect against DPN through the regulation of the TNF pathway. PURPOSE: Many studies show the association between DPN and nerve dysfunction, however, treatment options are limited. To identify specific therapeutic targets and active components of XBC that contribute to its anti-DPN effects, our study aimed to investigate the potential mechanism of action of XBC during the progression of DPN using a system pharmacology approach. METHODS: An approach involving UPLC-Q-TOF/MS and network pharmacology was used to analyze the compositions, potential targets, and active pathways of XBC. Further, models of streptozocin (STZ) induced mouse and glucose induced RSC96 cells were established to explore the therapeutic effects of XBC. High glucose induced RSC96 cells were pretreated with small interfering RNA (siRNA) to identify potential therapeutic targets of DPN. RESULTS: Seventy-one active compositions of XBC and five potential targets, including mitogen-activated protein kinase 8 (MAPK), interleukin-6 (IL-6), poly-ADP-ribose polymerase-1 (PARP1), vascular endothelial growth factor A (VEGFA), and transcription factor p65 (NF-κB), were considered as the potential regulators of DPN. In addition, the results revealed that the TNF signaling pathway was closely related to DPN. Moreover, DPN contributed to the decreased expressions of PI3K and AKT, increased TNF-α and IL-1ß in RSC96 cells, which were both reversed by XBC or TNF-α siRNA. CONCLUSION: XBC could protect against DPN by inhibiting the release of pro-inflammatory cytokines and regulating the activation of the TNF signaling pathway, further accelerating neurogenesis, and alleviating peripheral nerve lesions. Therefore, this study highlights the therapeutic value of XBC for DPN.


Asunto(s)
Neuropatías Diabéticas , Medicamentos Herbarios Chinos , Transducción de Señal , Factor de Necrosis Tumoral alfa , Animales , Medicamentos Herbarios Chinos/farmacología , Neuropatías Diabéticas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Interleucina-6/metabolismo , Interleucina-1beta/metabolismo , Farmacología en Red , Ratones Endogámicos C57BL , Cápsulas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA