Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(14): e2317574121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38530899

RESUMEN

Fine particulate matter (PM2.5) is globally recognized for its adverse implications on human health. Yet, remain limited the individual contribution of particular PM2.5 components to its toxicity, especially considering regional disparities. Moreover, prevention solutions for PM2.5-associated health effects are scarce. In the present study, we comprehensively characterized and compared the primary PM2.5 constituents and their altered metabolites from two locations: Taiyuan and Guangzhou. Analysis of year-long PM2.5 samples revealed 84 major components, encompassing organic carbon, elemental carbon, ions, metals, and organic chemicals. PM2.5 from Taiyuan exhibited higher contamination, associated health risks, dithiothreitol activity, and cytotoxicities than Guangzhou's counterpart. Applying metabolomics, BEAS-2B lung cells exposed to PM2.5 from both cities were screened for significant alterations. A correlation analysis revealed the metabolites altered by PM2.5 and the critical toxic PM2.5 components in both regions. Among the PM2.5-down-regulated metabolites, phosphocholine emerged as a promising intervention for PM2.5 cytotoxicities. Its supplementation effectively attenuated PM2.5-induced energy metabolism disorder and cell death via activating fatty acid oxidation and inhibiting Phospho1 expression. The highlighted toxic chemicals displayed combined toxicities, potentially counteracted by phosphocholine. Our study offered a promising functional metabolite to alleviate PM2.5-induced cellular disorder and provided insights into the geo-based variability in toxic PM2.5 components.


Asunto(s)
Contaminantes Atmosféricos , Enfermedades Mitocondriales , Humanos , Contaminantes Atmosféricos/análisis , Fosforilcolina , Material Particulado/análisis , Pulmón , Carbono/análisis , Monitoreo del Ambiente
2.
Environ Sci Technol ; 58(19): 8228-8238, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38695658

RESUMEN

Inhalation of fine particulate matter PM2.5-bound arsenic (PM2.5-As) may cause significant cardiovascular damage, due to its high concentration, long transmission range, and good absorption efficiency in organisms. However, both the contribution and the effect of the arsenic exposure pathway, with PM2.5 as the medium, on cardiovascular system damage in nonferrous smelting sites remain to be studied. In this work, a one-year site sample collection and analysis work showed that the annual concentration of PM2.5-As reached 0.74 µg/m3, which was 120 times the national standard. The predominant species in the PM2.5 samples were As (V) and As (III). A panel study among workers revealed that PM2.5-As exposure dominantly contributed to human absorption of As. After exposure of mice to PM2.5-As for 8 weeks, the accumulation of As in the high exposure group reached equilibrium, and its bioavailability was 24.5%. A series of animal experiments revealed that PM2.5-As exposure induced cardiac injury and dysfunction at the environmental relevant concentration and speciation. By integrating environmental and animal exposure assessments, more accurate health risk assessment models exposed to PM2.5-As were established for metal smelting areas. Therefore, our research provides an important scientific basis for relevant departments to formulate industry supervision, prevention and control policies.


Asunto(s)
Arsénico , Material Particulado , Humanos , Ratones , Animales , Exposición Profesional , Enfermedades Cardiovasculares , Medición de Riesgo , Disponibilidad Biológica , Contaminantes Atmosféricos , Metalurgia
3.
Anal Chem ; 95(7): 3556-3562, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36757384

RESUMEN

The broad application of plastic products has resulted in a considerable release of microplastics (MPs) into the ecosystem. While MPs in other environmental matrices (e.g., soil and water) have been studied for a long time, the atmospheric fine particulate matter (PM2.5)-bound MPs are rarely investigated due to the lack of an appropriate analytical approach. The prevalently used visual and spectroscopic means (e.g., optical microscopy, Fourier-transform infrared spectroscopy, and Raman spectroscopy) suffer from obvious drawbacks that cannot precisely detect MPs of tiny sizes and provide quantitative information. In the present study, a novel strategy that does not require sample pretreatment was developed to first effectuate accurate quantification of polyethylene MP (PE-MP) in PM2.5 based on pyrolysis-gas chromatography-tandem mass spectrometry (Pyr-GC-MS/MS). It featured acceptable recoveries (97%-110%), high sensitivity (LOD = 1 pg), and qualified precisions (RSD of 3%-13%). Employing this approach, for the first time, exact atmospheric concentrations of PE-MPs in PM2.5 from megacities in North (Zhengzhou and Taiyuan) and South (Guangzhou) China were obtained, and relatively serious pollution was found in Taiyuan. The 100% sample detection rates also suggested the widespread occurrence and possible human exposure risks of PM2.5-bound PE-MPs. In brief, the new strategy could conduct direct, sensitive, and accurate quantification of PE-MP in PM2.5, favoring further studies of environmental fates, distributions, and toxicities of atmospheric MPs.

4.
Environ Sci Technol ; 57(4): 1743-1754, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36683337

RESUMEN

Lead is known to have toxic effects on the cardiovascular system. Owing to its high concentration, transmission range, and absorption efficiency in organisms, inhalation of fine particulate matter (PM2.5)-bound lead (PM2.5-Pb) may cause significant cardiovascular damage. However, the contribution and adverse effects of PM2.5-Pb on workers and residents in non-ferrous metal smelting areas are not fully understood. In this work, the concentration and chemical speciation of PM2.5-Pb were analyzed to determine its pollution characteristics at a typical non-ferrous metal smelting site. A panel study conducted among factory workers revealed that PM2.5-Pb exposure makes an important contribution to the human absorption of Pb. Although the chemical speciation of PM2.5-Pb suggested poor water solubility, a high bioavailability was observed in mice (tissue average value: 50.1%, range: 31.1-71.1%) subjected to inhalation exposure for 8 weeks. Based on the bioavailability data, the relationship between PM2.5-Pb exposure and cardiovascular damage was evaluated in animal simulation experiments. Finally, a damage threshold and cardiovascular-specific risk assessment model were established for the non-ferrous metal smelting area. Our project not only accurately estimates the risk of PM2.5-bound heavy metals on the cardiovascular system but also offers a scientific basis for future prevention and therapy of PM2.5-Pb-related diseases.


Asunto(s)
Contaminantes Atmosféricos , Enfermedades Cardiovasculares , Metales Pesados , Humanos , Ratones , Animales , Disponibilidad Biológica , Enfermedades Cardiovasculares/inducido químicamente , Enfermedades Cardiovasculares/epidemiología , Plomo , Monitoreo del Ambiente , Factores de Riesgo , Material Particulado/análisis , Medición de Riesgo , Factores de Riesgo de Enfermedad Cardiaca , China , Contaminantes Atmosféricos/análisis
5.
Environ Sci Technol ; 56(11): 6914-6921, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34551519

RESUMEN

The wide use and continuous abrasion of rubber-related products appears to be leading to an incredible release of p-phenylenediamine (PPD) antioxidants in the environment. However, no related research has been conducted on the pollution characteristics and potential health risks of PM2.5-bound PPDs. We report for the first time the ubiquitous distributions of six emerging PPDs and a quinone derivative, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPDQ), in PM2.5 from urban areas of China. Atmospheric contamination levels of PM2.5-bound PPDs were found to be mostly in pg m-3 amounts between 2018 and 2019. Urban vehicle rubber tire abrasion was found to probably contribute to the PPDs in PM2.5 and accounted for their significant spatiotemporal-dependent concentration variations. Furthermore, 6PPDQ, an emerging oxidation product of 6PPD in the environment, was first quantified (pg m-3) with a total detection rate of 81% in the urban PM2.5, demonstrating its broad existence. On the basis of the determined ambient concentrations, the annual intakes of PPDs and 6PPDQ for adults were not low, indicating their possible human health risks induced by long-term exposure. This study confirms the widespread occurrence of PPDs and 6PPDQ in PM2.5, showing that the pollution of such compounds in urban air should not be underestimated.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Adulto , Contaminantes Atmosféricos/análisis , Antioxidantes , China , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , Fenilendiaminas , Quinonas , Goma
6.
Environ Sci Technol ; 56(15): 10629-10637, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35834306

RESUMEN

Substituted para-phenylenediamine (PPD) antioxidants have been extensively used to retard oxidative degradation of tire rubber and were found to pervade multiple environmental compartments. However, there is a paucity of research on the environmental occurrences of their transformation products. In this study, we revealed the co-occurrence of six PPD-derived quinones (PPD-Qs) along with eight PPDs in fine particulate matter (PM2.5) from two Chinese megacities, in which N,N'-bis(1,4-dimethylpentyl)-p-phenylenediamine quinone (77PD-Q) was identified and quantified for the first time. Prevalent occurrences of these emerging PPD-Qs were found in Taiyuan (5.59-8480 pg/m3) and Guangzhou (3.61-4490 pg/m3). Significantly higher levels of PPDs/PPD-Qs were observed at a roadside site, implying the possible contribution of vehicle emissions. Correlation analysis implied potential consistencies in the fate of these PPD-Qs and suggested that most of them were originated from the transformation of their parent PPDs. For different subpopulation groups under different exposure scenarios, the estimated daily intakes of PPD-Qs (0.16-1.25 ng kgbw-1 day-1) were comparable to those of their parent PPDs (0.19-1.41 ng kgbw-1 day-1), suggesting an important but overlooked exposure caused by novel PPD-Qs. Given the prolonged exposure of these antioxidants and their quinone derivatives to traffic-relevant occupations, further investigations on their toxicological and epidemiological effects are necessary.


Asunto(s)
Antioxidantes , Material Particulado , Benzoquinonas , Material Particulado/análisis , Fenilendiaminas/análisis , Prevalencia
7.
Environ Sci Technol ; 56(18): 13264-13273, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36082512

RESUMEN

Azoles that are used in pesticides, pharmaceuticals, and personal care products can have toxic effects on fish. However, there is no information regarding azole-induced visual disorder associated with thyroid disruption. We evaluated changes in retinal morphology, optokinetic response, transcript abundance of the genes involved in color perception and hypothalamic-pituitary-thyroid (HPT) axis, and thyroid hormone (TH) levels in zebrafish larvae exposed to common azoles, such as climbazole (CBZ, 0.1 and 10 µg/L) and triadimefon (TDF, 50 and 500 µg/L), at environmentally relevant and predicted worst-case environmental concentrations. Subsequently, the effect of azoles on TH-dependent GH3 cell proliferation and thyroid receptor (TR)-regulated transcriptional activity, as well as the in silico binding affinity between azoles and TR isoforms, was investigated. Azole exposure decreased cell densities of the ganglion cell layer, inner nuclear layer, and photoreceptor layer. Zebrafish larvae exposed to environmentally relevant concentrations of CBZ and TDF showed a decrease in optokinetic response to green-white and red-white stripes but not blue-white stripes, consistent with disturbance in the corresponding opsin gene expression. Azole exposure also reduced triiodothyronine levels and concomitantly increased HPT-related gene expression. Molecular docking analysis combined with in vitro TR-mediated transactivation and dual-luciferase reporter assays demonstrated that CBZ and TDF exhibited TR antagonism. These results are comparable to those obtained from a known TR antagonist, namely, TR antagonist 1, as a positive control. Therefore, damage to specific color perception by azoles appears to result from lowered TH signaling, indicating the potential threat of environmental TH disruptors to the visual function of fish.


Asunto(s)
Defectos de la Visión Cromática , Disruptores Endocrinos , Plaguicidas , Animales , Azoles/metabolismo , Azoles/farmacología , Disruptores Endocrinos/farmacología , Larva , Simulación del Acoplamiento Molecular , Opsinas/metabolismo , Opsinas/farmacología , Plaguicidas/metabolismo , Preparaciones Farmacéuticas/metabolismo , Hormonas Tiroideas/metabolismo , Triyodotironina/metabolismo , Triyodotironina/farmacología , Pez Cebra/metabolismo
8.
J Environ Sci (China) ; 115: 443-452, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34969472

RESUMEN

The COVID-19 pandemic has raised awareness about various environmental issues, including PM2.5 pollution. Here, PM2.5 pollution during the COVID-19 lockdown was traced and analyzed to clarify the sources and factors influencing PM2.5 in Guangzhou, with an emphasis on heavy pollution. The lockdown led to large reductions in industrial and traffic emissions, which significantly reduced PM2.5 concentrations in Guangzhou. Interestingly, the trend of PM2.5 concentrations was not consistent with traffic and industrial emissions, as minimum concentrations were observed in the fourth period (3/01-3/31, 22.45 µg/m3) of the lockdown. However, the concentrations of other gaseous pollutants, e.g., SO2, NO2 and CO, were correlated with industrial and traffic emissions, and the lowest values were noticed in the second period (1/24-2/03) of the lockdown. Meteorological correlation analysis revealed that the decreased PM2.5 concentrations during COVID-19 can be mainly attributed to decreased industrial and traffic emissions rather than meteorological conditions. When meteorological factors were included in the PM2.5 composition and backward trajectory analyses, we found that long-distance transportation and secondary pollution offset the reduction of primary emissions in the second and third stages of the pandemic. Notably, industrial PM2.5 emissions from western, southern and southeastern Guangzhou play an important role in the formation of heavy pollution events. Our results not only verify the importance of controlling traffic and industrial emissions, but also provide targets for further improvements in PM2.5 pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China/epidemiología , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Pandemias , Material Particulado/análisis , SARS-CoV-2
9.
J Cell Physiol ; 236(10): 6806-6823, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33782967

RESUMEN

Calcium controls the excitation-contraction coupling in cardiomyocytes. Embryonic stem cell-derived cardiomyocytes (ESC-CMs) are an important cardiomyocyte source for regenerative medicine and drug screening. Transient receptor potential vanilloid 1 (TRPV1) channels are nonselective cation channels that permeate sodium and calcium. This study aimed to investigate whether TRPV1 channels regulate the electrophysiological characteristics of ESC-CMs. If yes, what is the mechanism behind? By immunostaining and subcellular fractionation, followed by western blotting, TRPV1 was found to locate intracellularly. The staining pattern of TRPV1 was found to largely overlap with that of the sarco/endoplasmic reticulum Ca2+ -ATPase, the sarcoplasmic reticulum (SR) marker. By electrophysiology and calcium imaging, pharmacological blocker of TRPV1 and the molecular tool TRPV1ß (which could functionally knockdown TRPV1) were found to decrease the rate and diastolic depolarization slope of spontaneous action potentials, and the amplitude and frequency of global calcium transients. By calcium imaging, in the absence of external calcium, TRPV1-specific opener increased intracellular calcium; this increase was abolished by preincubation with caffeine, which could deplete SR calcium store. The results suggest that TRPV1 controls calcium release from the SR. By electrophysiology, TRPV1 blockade and functional knockdown of TRPV1 decreased the Na+ /Ca2+ exchanger (NCX) currents from both the forward and reverse modes, suggesting that sodium and calcium through TRPV1 stimulate the NCX activity. Our novel findings suggest that TRPV1 activity is important for regulating the spontaneous activity of ESC-CMs and reveal a novel interplay between TRPV1 and NCX in regulating the physiological functions of ESC-CMs.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Diferenciación Celular , Células Madre Embrionarias de Ratones/metabolismo , Miocitos Cardíacos/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Línea Celular , Acoplamiento Excitación-Contracción , Regulación de la Expresión Génica , Potenciales de la Membrana , Ratones , Contracción Miocárdica , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Intercambiador de Sodio-Calcio/genética , Canales Catiónicos TRPV/genética
10.
Chem Res Toxicol ; 34(12): 2558-2566, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34874164

RESUMEN

As the main active ingredient for the treatment of fungal infections, climbazole (CBZ) is commonly used in a variety of personal care products. After its use, CBZ enters the receiving environment directly or indirectly through domestic sewage. Its concentration can be up to several nanograms per liter in surface water. So far, the effects of CBZ on the reproductive system of female zebrafish have been systematically studied, but the potential toxicity mechanism of CBZ on male zebrafish still needs to be further explored. In this study, adult male zebrafish were exposed to CBZ at concentrations of 0.1, 10, and 1000 µg·L-1 for 28 days, and their testes were collected for histological, mass-spectrometry-based metabolomics, and biochemical analyses. We found that CBZ caused a significantly abnormal metabolism of purine and glutathione and triggered oxidative stress in zebrafish testes, thereby inducing testicular cell apoptosis. In addition, CBZ could inhibit the synthesis of essential sex hormones in the testis and thus reduce the sperm production. The conclusions of this study fill the data gap on the reproductive toxicity of CBZ to male zebrafish and highlight the ecotoxicological application of untargeted metabolomics in the biomarker discovery.


Asunto(s)
Hormonas Esteroides Gonadales/antagonistas & inhibidores , Imidazoles/farmacología , Testículo/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Hormonas Esteroides Gonadales/biosíntesis , Imidazoles/administración & dosificación , Masculino , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Pez Cebra
11.
Ecotoxicol Environ Saf ; 225: 112717, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34478981

RESUMEN

Due to the prohibition of polybrominated diphenyl ethers, organophosphate flame retardants (OPFRs) and tetrabromobisphenol A (TBBPA) have become emerging flame retardants. However, knowledge about their occurrence, especially their transformation products, is still limited. This study collected sediment samples from two rivers, i.e., Lianjiang River (located at an e-waste dismantling area) and Xiaoqing River (situated at a flame retardant production base), to investigate the occurrence, composition, and spatiality distribution of OPFRs, TBBPA, and their transformation products. Both targets were detected in the Lianjiang River in the range of 220-1.4 × 104 and 108-3.1 × 103 ng/g dw (dry weight) for OPFRs and TBBPA, and 0.11-2.35 and 4.8-414 ng/g dw for their respective transformation products, respectively. The concentrations of OPFRs and TBBPA in the Xiaoqing River ranged from 4.15 to 31.5 and 0.76-2.51 ng/g dw, respectively, and no transformation products were detected. Different compositional characteristics of OPFRs and distinct spatial distribution from mainstream and tributary observed between the two rivers are attributed to the difference in the local industries. Spatial distribution and principal component analysis indicated that e-waste dismantling activities could be a vital source of local pollution. Besides, the confluence of tributaries seemed to determine the contaminant levels in the Xiaoqing River. Also, concentration ratios and Spearman's correlation between metabolites and parent chemicals were analyzed. Low concentration ratios (3.6 ×10-4 to 0.16) indicated a low transformation degree, and Spearman's correlation analysis suggested transformation products were partly stemming from commercial products. Considering the limited study of these transformation products, more studies on their sources, transform mechanism, and toxicity are required.


Asunto(s)
Residuos Electrónicos , Retardadores de Llama , Monitoreo del Ambiente , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Organofosfatos , Bifenilos Polibrominados
12.
J Environ Sci (China) ; 105: 64-70, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34130840

RESUMEN

Simulation of fine particulate matter (PM2.5) exposure is essential for evaluating adverse health effects. In this work, an ambient exposure system that mimicked real atmospheric conditions was installed in Taiyuan, China to study impacts of chronic PM2.5 exposure on adult and aged mice as well as Sirtuin3 knockout (Sirt3 KO) mice and wild-type (WT) mice. The real-ambient exposure system eliminated the possible artificial effects caused from exposure experiments and maintained the physiochemical characteristics of PM2.5. The case studies indicated that aged mice exhibited apparent heart dysfunction involving increased heart rate and decreased blood pressure after 17-week of real-ambient PM2.5 exposure. Meanwhile, 15-week of real-ambient PM2.5 exposure decreased the heart rate and amounts of associated catecholamines to induce heart failure in Sirt3 KO mice. Additionally, the increased pro-inflammatory cytokines and decreased platelet related indices suggested that inflammation occurred. The changes of biomarkers detected by targeted metabolomics confirmed metabolic disorder in WT and Sirt3 KO mice after exposed to real-ambient PM2.5. These results indicated that the real-ambient PM2.5 exposure system could evaluate the risks of certain diseases associated with air pollution and have great potential for supporting the investigations of PM2.5 effects on other types of rodent models.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Animales , China , Ratones , Modelos Animales , Material Particulado/análisis , Material Particulado/toxicidad
13.
Environ Sci Technol ; 54(15): 9519-9528, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32609501

RESUMEN

Although the bioaccumulation of organophosphate flame retardants (OPFRs) in aquatic organisms has been investigated, little information is available about their bioaccumulation in mammals following chronic inhalation exposure. To address this knowledge gap, C57BL/6 mice were exposed to 7 PM2.5-associated OPFRs via the trachea to study their bioaccumulation, tissue distribution, and urinary metabolites. Low (corresponding to the real PM2.5 concentrations occurring during winter in Guangzhou), medium, and high dosages were examined. After 72 days' exposure, ∑OPFR concentrations in tissues from mice in the medium dosage group decreased in the order of intestine > heart > stomach > testis > kidney > spleen > brain > liver > lung > muscle. Of the OPFRs detected in all three exposure groups, chlorinated alkyl OPFRs were most heavily accumulated in mice. We found a significant positive correlation between the bioaccumulation ratio and octanol-air partition coefficient (KOA) in mice tissues for low log KOW OPFR congeners (log KOW ≤ 4, p < 0.05). Three urinary metabolites (di-p-cresyl phosphate: DCrP, diphenyl phosphate: DPhP, dibutyl phosphate: DnBP) were detected from the high dosage group. These results provide important insights into the bioaccumulation potential of OPFRs in mammals and emphasize the health risk of chlorinated alkyl OPFRs.


Asunto(s)
Retardadores de Llama , Animales , Biomarcadores , Exposición a Riesgos Ambientales , Retardadores de Llama/análisis , Retardadores de Llama/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Organofosfatos/análisis , Organofosfatos/toxicidad , Material Particulado
14.
Ecotoxicol Environ Saf ; 193: 110368, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32114245

RESUMEN

Emerging POPs have received increasing attention due to their potential persistence and toxicity, but thus far the report regarding the occurrence and distribution of these POPs in PM2.5 is limited. In this study, an extremely sensitive and reliable method, using ultrasonic solvent extraction and silica gel purification followed by gas chromatography coupled with electron ionization triple quadrupole mass spectrometry, was developed and used for the trace analysis of hexachlorobutadiene (HCBD), pentachloroanisole (PCA) and its analogs chlorobenzenes (CBs) in PM2.5 from Taiyuan within a whole year. The limits of detection and limits of quantitation of analytes were 1.14 × 10-4‒2.74 × 10-4 pg m-3 and 3.80 × 10-4‒9.14 × 10-4 pg m-3. HCBD and PCA were detected at the mean concentrations of 3.69 and 1.84 pg m-3 in PM2.5, which is reported for the first time. Based on the results of statistical analysis, HCBD may come from the unintentional emission of manufacture or incineration of chlorinate-contained products but not coal combustion, while O3-induced photoreaction was the potential source of PCA in PM2.5. The temporal distributions of CBs in PM2.5 were closely related to coal-driven or agricultural activities. Accordingly, our study reveals the contamination profiles of emerging POPs in PM2.5 from Taiyuan.


Asunto(s)
Contaminantes Atmosféricos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Material Particulado/química , Anisoles/análisis , Butadienos/análisis , Clorobencenos/análisis , Carbón Mineral , Incineración , Espectrometría de Masas en Tándem/métodos
15.
Ecotoxicol Environ Saf ; 201: 110827, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32535366

RESUMEN

Numerous experimental and epidemiological studies have demonstrated that exposure to PM2.5 may result in pathogenesis of several major cardiovascular diseases (CVDs), which can be attributed to the combined adverse effects induced by the complicated components of PM2.5. Organic materials, which are major components of PM2.5, contain thousands of chemicals, and most of them are environmental hazards. However, the contamination profile and contribution to overall toxicity of PM2.5-bound organic components (OCs) have not been thoroughly evaluated yet. Herein, we aim to provide an overview of the literature on PM2.5-bound hydrophobic OCs, with an emphasis on the chemical identity and reported impairments on the cardiovascular system, including the potential exposure routes and mechanisms. We first provide an update on the worldwide mass concentration and composition data of PM2.5, and then, review the contamination profile of PM2.5-bound hydrophobic OCs, including constitution, concentration, distribution, formation, source, and identification. In particular, the link between exposure to PM2.5-bound hydrophobic OCs and CVDs and its possible underlying mechanisms are discussed to evaluate the possible risks of PM2.5-bound hydrophobic OCs on the cardiovascular system and to provide suggestions for future studies.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Enfermedades Cardiovasculares/inducido químicamente , Sistema Cardiovascular/efectos de los fármacos , Monitoreo del Ambiente/métodos , Compuestos Orgánicos/toxicidad , Material Particulado/toxicidad , Contaminantes Atmosféricos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos Orgánicos/química , Material Particulado/química
16.
J Cell Physiol ; 234(11): 21235-21248, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31032947

RESUMEN

Attention has recently paid to the interaction of triphenyl phosphate (TPHP) and body tissues, particularly within the reproductive and development systems, due to its endocrine-disrupting properties. However, the acute effects of TPHP on early embryonic development remain unclear. Here, we used mouse embryonic stem cells (mESC) and zebrafish embryos to investigate whether TPHP is an embryo toxicant. First, we found that continuous exposure of TPHP decreased the proliferation and increased the apoptotic populations of mESCs in a concentration-dependent manner. Results of mass spectrometry showed that the intracellular concentration of TPHP reached 39.45 ± 7.72 µg/g w/w after 3 hr of acute exposure with TPHP (38.35 µM) but gradually decreased from 3 hr to 48 hr. Additionally, DNA damage was detected in mESCs after a short-term treatment with TPHP, which in turn, activated DNA damage responses, leading to cell cycle arrest by changing the expression levels of p53, proliferating cell nuclear antigen, and Y15-phosphorylated Cdk I. Furthermore, our results revealed that short-term treatment with TPHP disturbed cardiac differentiation by decreasing the expression levels of Oct4, Sox2, and Nanog and transiently reduced the glycolysis capacity in mESCs. In zebrafish embryos, exposure to TPHP resulted in broad, concentration-dependent developmental defects and coupled with heart malformation and reduced heart rate. In conclusion, the two models demonstrate that acute exposure to TPHP affects early embryonic development and disturbs the cardiomyogenic differentiation.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Células Madre Embrionarias de Ratones/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Organofosfatos/toxicidad , Animales , Proliferación Celular/efectos de los fármacos , Embrión no Mamífero , Ratones , Pez Cebra
17.
Ecotoxicol Environ Saf ; 168: 378-387, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30396134

RESUMEN

A growing number of epidemiological surveys show that PM2.5 is an important promoter for the cardiovascular dysfunction induced by atmospheric pollution. PM2.5 is a complex mixture of solid and liquid airborne particles and its components determine the health risk of PM2.5to a great extent. However, the individual cardiotoxicities of different PM2.5 fractions are still unclear, especially in the cellular level. Here we used the neonatal rat cardiomyocytes (NRCMs) to evaluate the cardiac toxicity of PM2.5 exposure. The cytotoxicities of Total-PM2.5, water soluble components of PM2.5 (WS-PM2.5) and water insoluble components of PM2.5 (WIS-PM2.5), which include the cell viability, cell membrane damage, reactive oxygen species (ROS) generation, were examined with NRCMs in vitro. The results indicated that Total-PM2.5 or WIS-PM2.5 exposure significantly decreased the cell viability, induced the cell membrane damage and increased the ROS level in NRCMs at concentrations above 50 µg/mL. However, WS-PM2.5 exposure could induce the cytotoxicity on NRCMs until the concentration of WS-PM2.5 was raised to a higher concentration (75 µg/mL). Furthermore, the DNA damage was detected in NRCMs after 48 h of exposure with Total-PM2.5, WS-PM2.5 or WIS-PM2.5 (75 µg/mL) and the adverse effects on mitochondrial function and action potentials of NRCMs were detected only both in the Total-PM2.5 and WIS-PM2.5 treatment group. In summary, our project not only estimates the risk of PM2.5 on cardiac cells but also reveal that Total-PM2.5 and WIS-PM2.5 exposure were predominantly associated with the functional cardiotoxicities in NRCMs.


Asunto(s)
Cardiotoxinas/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Material Particulado/toxicidad , Animales , Animales Recién Nacidos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Daño del ADN/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo
18.
J Pharmacol Exp Ther ; 363(2): 211-220, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28860353

RESUMEN

Histone deacetylase (HDAC) inhibitors modulate acetylation/deacetylation of histone and nonhistone proteins. They have been widely used for cancer treatment. However, there have been only a few studies investigating the effect of HDAC inhibitors on vascular tone regulation, most of which employed chronic treatment with HDAC inhibitors. In the present study, we found that two hydroxamate-based pan-HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA), could partially but acutely relax high extracellular K+-contracted mouse aortas. SAHA and TSA also attenuated the high extracellular K+-induced cytosolic Ca2+ rise and inhibited L-type Ca2+ channel current in whole-cell patch-clamp. These data demonstrate that SAHA could inhibit L-type Ca2+ channels to cause vascular relaxation. In addition, SAHA and TSA dose dependently relaxed the arteries precontracted with phenylephrine. The relaxant effect of SAHA and TSA was greater in phenylephrine-precontracted arteries than in high K+-contracted arteries. Although part of the relaxant effect of SAHA and TSA on phenylephrine-precontracted arteries was related to L-type Ca2+ channels, both agents could also induce relaxation via a mechanism independent of L-type Ca2+ channels. Taken together, HDAC inhibitors SAHA and TSA can acutely relax blood vessels via their inhibitory action on L-type Ca2+ channels and via another L-type Ca2+ channel-independent mechanism.


Asunto(s)
Aorta/efectos de los fármacos , Aorta/fisiología , Canales de Calcio Tipo L/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Vasodilatación/efectos de los fármacos , Animales , Aorta/metabolismo , Transporte Biológico/efectos de los fármacos , Calcio/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Fenómenos Electrofisiológicos/efectos de los fármacos , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Masculino , Ratones , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Fenilefrina/farmacología , Potasio/metabolismo , Vorinostat
19.
J Cell Physiol ; 231(2): 403-13, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26130157

RESUMEN

Embryonic stem cells (ESCs) have tremendous potential for research and future therapeutic purposes. However, the calcium handling mechanism in ESCs is not fully elucidated. Aims of this study are (1) to investigate if transient receptor potential vanilloid-3 (TRPV3) channels are present in mouse ESCs (mESCs) and their subcellular localization; (2) to investigate the role of TRPV3 in maintaining the characteristics of mESCs. Western blot and immunocytochemistry showed that TRPV3 was present at the endoplasmic reticulum (ER) of mESCs. Calcium imaging showed that, in the absence of extracellular calcium, TRPV3 activators camphor and 6-tert-butyl-m-cresol increased the cytosolic calcium. However, depleting the ER store in advance of activator addition abolished the calcium increase, suggesting that TRPV3 released calcium from the ER. To dissect the functional role of TRPV3, TRPV3 was activated and mESC proliferation was measured by trypan blue exclusion and MTT assays. The results showed that TRPV3 activation led to a decrease in mESC proliferation. Cell cycle analysis revealed that TRPV3 activation increased the percentage of cells in G2 /M phase; consistently, Western blot also revealed a concomitant increase in the expression of inactive form of cyclin-dependent kinase 1, suggesting that TRPV3 activation arrested mESCs at G2 /M phase. TRPV3 activation did not alter the expression of pluripotency markers Oct-4, Klf4 and c-Myc, suggesting that the pluripotency was preserved. Our study is the first study to show the presence of TRPV3 at ER. Our study also reveals the novel role of TRPV3 in controlling the cell cycle and preserving the pluripotency of ESCs.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Apoptosis , Señalización del Calcio/efectos de los fármacos , Alcanfor/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Diferenciación Celular , Línea Celular , Proliferación Celular , Cresoles/farmacología , Células Madre Embrionarias/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/fisiología , Factor 4 Similar a Kruppel , Ratones , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/genética
20.
Protein Expr Purif ; 109: 23-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25637142

RESUMEN

The α2-macroglobulin receptor (α2MR) is a major domain of complement component 3b, which may play an important role in regulating the downstream complement system in teleosts. In order to characterize the domain thoroughly larger than currently available quantities are required. Thus, in this study the Epinephelus coioides α2MR (Ec-α2MR) was expressed and secreted by the methylotrophic yeast Pichia pastoris with variations in pH and induction time to identify optimal production conditions. At pH 5.5 with 48h induction 13mg of Ec-α2MR (ca. 90% purity) was obtained from 500ml of culture. The Ec-α2MR protein product was validated by MALDI-TOF MS sequence analysis, and both Western blotting and ELISAs demonstrated that it possessed the expected activity, binding to C3b or C3b homolog antibodies, and thus can be used for future studies of the interactions and functions of complement proteins in teleosts.


Asunto(s)
Lubina/genética , Complemento C3b/genética , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Pichia/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos/metabolismo , Western Blotting , Precipitación Química , Clonación Molecular , Complemento C3b/química , Complemento C3b/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Concentración de Iones de Hidrógeno , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/química , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/aislamiento & purificación , Datos de Secuencia Molecular , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA