Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 705
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8016): 484-492, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811729

RESUMEN

The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel ß-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.


Asunto(s)
Bacterias , Bacteriófagos , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Bacterias/virología , Bacterias/genética , Bacterias/inmunología , Bacteriófagos/genética , Bacteriófagos/inmunología , Chryseobacterium/genética , Chryseobacterium/inmunología , Chryseobacterium/virología , Proteína 9 Asociada a CRISPR/química , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , División del ADN , Sitios Genéticos/genética , Modelos Moleculares , Dominios Proteicos
2.
Nano Lett ; 24(9): 2861-2869, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38408922

RESUMEN

Advanced portable healthcare devices with high efficiencies, small pressure drops, and high-temperature resistance are urgently desired in harsh environments with high temperatures, high humidities, and high levels of atmospheric pollution. Triboelectric nanogenerators (TENGs), which serve as energy converters in a revolutionary self-powered sensor device, present a sustainable solution for meeting these requirements. In this work, we developed a porous negative triboelectric material by synthesizing ZIF-8 on the surface of a cellulose/graphene oxide aerogel, grafting it with trimethoxy(1H,1H,2H,2H-heptadecafluorodecyl)silane, and adding a negative corona treatment, and it was combined with a positive triboelectric material to create a cellulose nanofiber-based TENG self-powered filter. The devices achieved a balance between a small pressure drop (53 Pa) and high filtration efficiency (98.97%, 99.65%, and 99.93% for PM0.3, PM0.5, and PM1, respectively), demonstrating robust filtration properties at high temperatures and high humidities. Our work provides a new approach for developing self-powered wearable healthcare devices with excellent air filtration properties.

3.
J Cell Mol Med ; 28(6): e18135, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429900

RESUMEN

Lung adenocarcinoma (LUAD) is characterized by a high incidence rate and mortality. Recently, POC1 centriolar protein A (POC1A) has emerged as a potential biomarker for various cancers, contributing to cancer onset and development. However, the association between POC1A and LUAD remains unexplored. We extracted The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) data sets to analyse the differential expression of POC1A and its relationship with clinical stage. Additionally, we performed diagnostic receiver operator characteristic (ROC) curve analysis and Kaplan-Meier (KM) survival analysis to assess the diagnostic and prognostic value of POC1A in LUAD. Furthermore, we investigated the correlation between POC1A expression and immune infiltration, tumour mutation burden (TMB), immune checkpoint expression and drug sensitivity. Finally, we verified POC1A expression using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). Cell experiments were conducted to validate the effect of POC1A expression on the proliferation, migration and invasion of lung cancer cells. POC1A exhibited overexpression in most tumour tissues, and its overexpression in LUAD was significantly correlated with late-stage presentation and poor prognosis. The high POC1A expression group showed lower levels of immune infiltration but higher levels of immune checkpoint expression and TMB. Moreover, the high POC1A expression group demonstrated sensitivity to multiple drugs. In vitro experiments confirmed that POC1A knockdown led to decreased proliferation, migration, and invasion of lung cancer cells. Our findings suggest that POC1A may contribute to tumour development by modulating the cell cycle and immune cell infiltration. It also represents a potential therapeutic target and marker for the diagnosis and prognosis of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Neoplasias Pulmonares/genética , Regulación hacia Arriba/genética
4.
Breast Cancer Res ; 26(1): 23, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317231

RESUMEN

BACKGROUND: The most aggressive form of breast cancer is triple-negative breast cancer (TNBC), which lacks expression of the estrogen receptor (ER) and progesterone receptor (PR), and does not have overexpression of the human epidermal growth factor receptor 2 (HER2). Treatment options for women with TNBC tumors are limited, unlike those with ER-positive tumors that can be treated with hormone therapy, or those with HER2-positive tumors that can be treated with anti-HER2 therapy. Therefore, we have sought to identify novel targeted therapies for TNBC. In this study, we investigated the potential of a novel phosphatase, NUDT5, as a potential therapeutic target for TNBC. METHODS: The mRNA expression levels of NUDT5 in breast cancers were investigated using TCGA and METABRIC (Curtis) datasets. NUDT5 ablation was achieved through siRNA targeting and NUDT5 inhibition with the small molecule inhibitor TH5427. Xenograft TNBC animal models were employed to assess the effect of NUDT5 inhibition on in vivo tumor growth. Proliferation, death, and DNA replication assays were conducted to investigate the cellular biological effects of NUDT5 loss or inhibition. The accumulation of 8-oxo-guanine (8-oxoG) and the induction of γH2AX after NUDT5 loss was determined by immunofluorescence staining. The impact of NUDT5 loss on replication fork was assessed by measuring DNA fiber length. RESULTS: In this study, we demonstrated the significant role of an overexpressed phosphatase, NUDT5, in regulating oxidative DNA damage in TNBCs. Our findings indicate that loss of NUDT5 results in suppressed growth of TNBC both in vitro and in vivo. This growth inhibition is not attributed to cell death, but rather to the suppression of proliferation. The loss or inhibition of NUDT5 led to an increase in the oxidative DNA lesion 8-oxoG, and triggered the DNA damage response in the nucleus. The interference with DNA replication ultimately inhibited proliferation. CONCLUSIONS: NUDT5 plays a crucial role in preventing oxidative DNA damage in TNBC cells. The loss or inhibition of NUDT5 significantly suppresses the growth of TNBCs. These biological and mechanistic studies provide the groundwork for future research and the potential development of NUDT5 inhibitors as a promising therapeutic approach for TNBC patients.


Asunto(s)
Pirofosfatasas , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Línea Celular Tumoral , Proliferación Celular , Pirofosfatasas/genética , Receptores de Estrógenos/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
5.
Kidney Int ; 105(3): 562-581, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38142040

RESUMEN

The parathyroid gland is one of the main organs that regulate calcium and phosphorus metabolism. It is mainly composed of chief cells and oxyphil cells. Oxyphil cell counts are low in the parathyroid glands of healthy adults but are dramatically increased in patients with uremia and secondary hyperparathyroidism (SHPT). Increased oxyphil cell counts are related to drug treatment resistance, but the origin of oxyphil cells and the mechanism of proliferation remain unknown. Herein, three types of parathyroid nodules (chief cell nodules, oxyphil cell nodules and mixed nodules, respectively) excised from parathyroid glands of uremic SHPT patients were used for single-cell RNA sequencing (scRNA-seq), other molecular biology studies, and transplantation into nude mice. Through scRNA-seq of parathyroid mixed nodules from three patients with uremic SHPT, we established the first transcriptomic map of the human parathyroid and found a chief-to-oxyphil cell transdifferentiation characterized by gradual mitochondrial enrichment associated with the uremic milieu. Notably, the mitochondrial enrichment and cellular proliferation of chief cell and oxyphil cell nodules decreased significantly after leaving the uremic milieu via transplantation into nude mice. Remarkably, the phenotype of oxyphil cell nodules improved significantly in the nude mice as characterized by decreased mitochondrial content and the proportion of oxyphil cells to chief cells. Thus, our study provides a comprehensive single-cell transcriptome atlas of the human parathyroid and elucidates the origin of parathyroid oxyphil cells and their underlying transdifferentiating mechanism. These findings enhance our understanding of parathyroid disease and may open new treatment perspectives for patients with chronic kidney disease.


Asunto(s)
Hiperparatiroidismo Secundario , Glándulas Paratiroides , Adulto , Animales , Ratones , Humanos , Glándulas Paratiroides/metabolismo , Células Oxífilas , Ratones Desnudos , Transdiferenciación Celular , Hiperparatiroidismo Secundario/genética , Hiperparatiroidismo Secundario/terapia , Análisis de Secuencia de ARN
6.
Anal Chem ; 96(25): 10391-10398, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38844882

RESUMEN

DNA-templated silver nanoclusters (AgNCs-DNA) can be synthesized via a one-pot method bypassing the tedious process of biomolecular labeling. Appending an aptamer to DNA templates results in dual-functionalized DNA strands that can be utilized for synthesizing aptamer-modified AgNCs, thereby enabling the development of label-free fluorescence aptasensors. However, a major challenge lies in the necessity to redesign the dual-functionalized DNA strand for each specific target, thus increasing the complexity and hindering widespread application of these aptasensors. To overcome this challenge, we designed six DNA strands (DNA1-DNA6) that incorporate the templates for AgNCs synthesis and A4-linker for further aptamer coupling. Among all the synthesized AgNCs-DNA samples, it was found that both AgNCs-DNA1 and AgNCs-DNA2 stood out for their excellent long-term stability. After capturing the T4-linker that connected with aptamer1 specific for aflatoxin B1 (AFB1), however, we found that only AgNCs-DNA1/aptamer1 maintained excellent long-term stability. This finding highlighted the potential of AgNCs-DNA1 as a versatile label-free fluorescence probe for the development of on-demand fluorescence aptasensors. To emphasize its benefits in aptasensing applications, we utilized AgNCs-DNA1/aptamer1 as the fluorescence probe and MoS2 nanosheets as the quencher to develop a FRET aptasensor for AFB1 detection. This aptasensor demonstrated remarkable sensitivity, enabling the detection of AFB1 within a wide concentration range of 0.03-120 ng/mL, with a limit of detection as low as 3.6 pg/mL (S/N = 3). The versatility of the aptasensor has been validated through the recognition of diverse targets, employing aptamer2 specific for ochratoxin A and aptamer3 specific for zearalenone, thereby showcasing its extensive applicability for on-demand detection. The universal applicability of this aptasensor holds great promise for future applications in diverse fields including food safety, environmental monitoring, and clinical diagnosis.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , ADN , Transferencia Resonante de Energía de Fluorescencia , Nanopartículas del Metal , Plata , Plata/química , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , ADN/química , Técnicas Biosensibles/métodos , Aflatoxina B1/análisis , Límite de Detección
7.
Anal Chem ; 96(22): 9192-9199, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38758357

RESUMEN

Singlet oxygen (1O2) plays imperative roles in a variety of biotic or abiotic stresses in crops. The change of its concentration within a crop is closely related to the crop growth and development. Accordingly, there is an urgent need to develop an efficient analytical method for on-site quantitative detection of 1O2 in crops. Here, we judiciously constructed a novel ratiometric fluorescent probe, SX-2, for the detection of 1O2 in crops. Upon treating with 1O2, probe SX-2 displayed highly selective ratiometric fluorescence response, which is favorable for the quantitative detection of 1O2. Concurrently, the fluorescence solution color of probe SX-2 was varied, obviously from blue to yellow, indicating that the probe is beneficial for on-site detection by the naked eye. Sensing reaction mechanism studies showed that the 2,3-diphenyl imidazole group in SX-2 could function as a new selective recognition group for 1O2. Probe SX-2 was utilized for the detection of photoirradiation-induced 1O2 and endogenous 1O2 in living cells. The changes in the 1O2 level in zebrafish were also tracked by fluorescence imaging. In addition, the production of 1O2 in crop leaves under a light source of different wavelengths was studied. The results demonstrated more 1O2 were produced under a light source of 365 nm. Furthermore, to achieve on-site quantitative detection, a mobile fluorescence analysis device has been made. Probe SX-2 and mobile fluorescence analysis device were capable of on-site quantitative detecting of 1O2 in crops. The method developed herein will be convenient for the on-site quantitative measurement of 1O2 in distinct crops.


Asunto(s)
Productos Agrícolas , Colorantes Fluorescentes , Oxígeno Singlete , Pez Cebra , Colorantes Fluorescentes/química , Oxígeno Singlete/metabolismo , Oxígeno Singlete/química , Productos Agrícolas/química , Productos Agrícolas/metabolismo , Animales , Imagen Óptica , Humanos
8.
Small ; : e2310058, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441362

RESUMEN

Nanocomposite materials have been thoroughly exploited in additive manufacturing, as a means to alter physical, chemical, and optical properties of resulting structures. Herein, nanocomposite materials suitable for direct laser writing (DLW) by two-photon polymerization are presented. These materials, comprising silica nanoparticles, bring significant added value to the technology through physical reinforcement and controllable photonic properties. Incorporation into acrylate photoresists, via a one-step fabrication process, enables the formation of complex structures with large overhangs. The inclusion of 150 nm silica nanoparticles in DLW photoresists at high concentrations, allows for the fabrication of composite microstructures that show reflected color, a product of the relative contributions from the quasi-ordering and random scattering. Using common DLW design parameters, such as slicing distance and structure dimension, a wide gamut of structural color, in solution, using a set concentration of nanoparticles is demonstrated. Numerical modeling is employed to predict the reflected wavelength of the pixel arrays, across the visible spectrum, and this information is used to encode reflected colors into different pixel arrays.

9.
Opt Lett ; 49(6): 1544-1547, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489446

RESUMEN

Terahertz (THz) metasurfaces have opened up a new avenue for the THz wavefront modulation. However, high-efficient and low-cost fabrication of THz metasurfaces remains a great challenge today. Here, quasi-capsule-shaped polarization-multiplexed holographic THz metasurfaces were printed by a beam-shaped femtosecond laser. The laser beam was spatially modulated by holograms of optimized cylindrical lens loaded on a spatial light modulator (SLM). The size of quasi-capsule apertures can be exquisitely and flexibly controlled by adjusting the focal length in holograms, pulse energy, and pulse number. Based on near-field diffraction and Burch encoding, an array of 100 × 100 basic unit apertures were initially designed, and a polarization-multiplexed THz metasurface was finally printed with a dimension of 8 mm × 8 mm. The function of polarization multiplexing was demonstrated, by which two kinds of images were reconstructed in response to X and Y-polarization THz waves, respectively. The present work highlights a great leap in fabrication method for THz metasurfaces and hopefully stimulates the development of miniaturized and integrated THz systems.

10.
BMC Cancer ; 24(1): 117, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38262977

RESUMEN

BACKGROUND: For brain metastases (BMs) from EGFR/ALK-positive non-small cell lung cancer (NSCLC), the best time to administer tyrosine kinase inhibitors (TKIs) and brain radiotherapy (RT) has not been identified. This analysis was an attempt to solve this problem in part. METHODS: A total of 163 patients with EGFR/ALK-positive NSCLC and brain metastasis (BM) who were diagnosed between January 2017 and July 2022 were included in this study. Ninety-one patients underwent upfront RT, and 72 patients received deferred RT. Comparing the clinical efficacy and safety in these two patient cohorts was the main goal of the study. RESULTS: The average follow-up period was 20.5 months (range 2.0 to 91.9 months). The median overall survival (OS) was 26.5 months, and the median intracranial progression-free survival (iPFS) was 23.6 months. Upfront RT considerably increased the iPFS (26.9 vs. 20.2 months, hazard ratio [HR] = 5.408, P = 0.020) and OS (31.2 vs. 22.3 months, HR = 4.667, P = 0.031) compared to deferred RT. According to multivariate analysis, upfront RT was an independent risk factor for predicting iPFS (HR = 1.670, P = 0.021). Upfront RT (HR = 1.531, P = 0.044), TKI therapy (HR = 0.423, P < 0.001), and oligometastases (HR = 2.052, P = 0.021) were found to be independent risk factors for OS. CONCLUSION: This study showed that upfront RT combined with TKI treatment can significantly improve intracranial disease management and prolong survival in patients with EGFR/ALK mutations in BMs from NSCLC.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Estudios Retrospectivos , Encéfalo , Receptores ErbB , Proteínas Tirosina Quinasas Receptoras
11.
BMC Cancer ; 24(1): 71, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216883

RESUMEN

BACKGROUND: Ras gene mutation and/or overexpression are drivers in the progression of cancers, including colorectal cancer. Blocking the Ras signaling has become a significant strategy for cancer therapy. Previously, we constructed a recombinant scFv, RGD-p21Ras-scFv by linking RGD membrane-penetrating peptide gene with the anti-p21Ras scFv gene. Here, we expressed prokaryotically RGD-p21Ras-scFv on a pilot scale, then investigated the anti-tumor effect and the mechanism of blocking Ras signaling. METHODS: The E. coli bacteria which could highly express RGD-p21Ras-scFv was screened and grown in 100 L fermentation tank to produce RGD-p21Ras-scFv on optimized induced expression conditions. The scFv was purified from E. coli bacteria using His Ni-NTA column. ELISA was adopted to test the immunoreactivity of RGD-p21Ras-scFv against p21Ras proteins, and the IC50 of RGD-p21Ras-scFv was analyzed by CCK-8. Immunofluorescence colocalization and pull-down assays were used to determine the localization and binding between RGD-p21Ras-scFv and p21Ras. The interaction forces between RGD-p21Ras-scFv and p21Ras after binding were analyzed by molecular docking, and the stability after binding was determined by molecular dynamics simulations. p21Ras-GTP interaction was detected by Ras pull-down. Changes in the MEK-ERK /PI3K-AKT signaling paths downstream of Ras were detected by WB assays. The anti-tumor activity of RGD-p21Ras-scFv was investigated by nude mouse xenograft models. RESULTS: The technique of RGD-p21Ras-scFv expression on a pilot scale was established. The wet weight of the harvested bacteria was 31.064 g/L, and 31.6 mg RGD-p21Ras-scFv was obtained from 1 L of bacterial medium. The purity of the recombinant antibody was above 85%, we found that the prepared on a pilot scale RGD-p21Ras-scFv could penetrate the cell membrane of colon cancer cells and bind to p21Ras, then led to reduce of p21Ras-GTP (active p21Ras). The phosphorylation of downstream effectors MEK-ERK /PI3K-AKT was downregulated. In vivo antitumor activity assays showed that the RGD-p21Ras-scFv inhibited the proliferation of colorectal cancer cell lines. CONCLUSION: RGD-p21Ras-scFv prokaryotic expressed on pilot-scale could inhibited Ras-driven colorectal cancer growth by partially blocking p21Ras-GTP and might be able to be a hidden therapeutic antibody for treating RAS-driven tumors.


Asunto(s)
Neoplasias Colorrectales , Escherichia coli , Ratones , Animales , Humanos , Escherichia coli/genética , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Guanosina Trifosfato , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Proto-Oncogénicas p21(ras)/genética
12.
Pediatr Res ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937639

RESUMEN

BACKGROUND: The COVID-19 pandemic has prompted investigations into the association between this novel virus and allergic diseases, particularly asthma in children. However, the nature of this relationship remains poorly established. OBJECTIVE: This study aims to determine the clinical characteristics of children with allergic diseases who have contracted COVID-19. METHODS: A retrospective study was conducted at the Children's Hospital Affiliated to the Capital Institute of Pediatrics from January to March 2023. A total of 568 children aged 0-17 years diagnosed with asthma and COVID-19 infection were included. A comparative analysis of clinical characteristics was conducted between asthma and non-asthma groups. RESULTS: Asthmatic children with COVID-19 infection showed significantly higher frequencies of cough, wheezing, expectoration, and long-term symptoms compared to those without asthma (P < 0.05). Subgroups with poor therapy compliance exhibited elevated proportions of cough, chest tightness, and wheezing compared to good therapy compliance (P < 0.05). Multivariate logistic regression identified poor therapy compliance as a risk factor for long COVID in asthmatic children. CONCLUSION: Children with asthma secondary to COVID-19 infection were more prone to developing coughs, expectoration, and wheezing. Poor therapy compliance emerged as a significant risk factor for long COVID-19 in these individuals. IMPACT: Asthmatic children with COVID-19 infection showed significantly higher frequencies of cough, wheezing, expectoration. Poor therapy compliance was the risk factor for long COVID in asthmatic children. This article supplements the effects of different therapeutic drugs on the condition of children with asthma after infection with COVID-19 as well as the possible risk factors for the long COVID. The results of our study have important implications for public health policy makers and healthcare professionals. To understand the impact of COVID-19 on children with asthma will help guide appropriate management strategies and ensure access to necessary healthcare resources.

13.
Environ Sci Technol ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436579

RESUMEN

Harmful algal blooms (HABs) pose a significant ecological threat and economic detriment to freshwater environments. In order to develop an intelligent early warning system for HABs, big data and deep learning models were harnessed in this study. Data collection was achieved utilizing the vertical aquatic monitoring system (VAMS). Subsequently, the analysis and stratification of the vertical aquatic layer were conducted employing the "DeepDPM-Spectral Clustering" method. This approach drastically reduced the number of predictive models and enhanced the adaptability of the system. The Bloomformer-2 model was developed to conduct both single-step and multistep predictions of Chl-a, integrating the " Alert Level Framework" issued by the World Health Organization to accomplish early warning for HABs. The case study conducted in Taihu Lake revealed that during the winter of 2018, the water column could be partitioned into four clusters (Groups W1-W4), while in the summer of 2019, the water column could be partitioned into five clusters (Groups S1-S5). Moreover, in a subsequent predictive task, Bloomformer-2 exhibited superiority in performance across all clusters for both the winter of 2018 and the summer of 2019 (MAE: 0.175-0.394, MSE: 0.042-0.305, and MAPE: 0.228-2.279 for single-step prediction; MAE: 0.184-0.505, MSE: 0.101-0.378, and MAPE: 0.243-4.011 for multistep prediction). The prediction for the 3 days indicated that Group W1 was in a Level I alert state at all times. Conversely, Group S1 was mainly under an Level I alert, with seven specific time points escalating to a Level II alert. Furthermore, the end-to-end architecture of this system, coupled with the automation of its various processes, minimized human intervention, endowing it with intelligent characteristics. This research highlights the transformative potential of integrating big data and artificial intelligence in environmental management and emphasizes the importance of model interpretability in machine learning applications.

14.
Environ Sci Technol ; 58(12): 5244-5254, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466635

RESUMEN

Suspended particulate matter (SPM) carries a major fraction of metals in turbid coastal waters, markedly influencing metal bioaccumulation and posing risks to marine life. However, its effects are often overlooked in current water quality criteria for metals, primarily due to challenges in quantifying SPM's contribution. This contribution depends on the SPM concentration, metal distribution coefficients (Kd), and the bioavailability of SPM-bound metals (assimilation efficiency, AE), which can collectively be integrated as a modifying factor (MF). Accordingly, we developed a new stable isotope method to measure metal AE by individual organisms from SPM, employing the widely distributed filter-feeding clam Ruditapes philippinarum as a representative species. Assessing SPM from 23 coastal sites in China, we found average AEs of 42% for Zn, 26% for Cd, 20% for Cu, 8% for Ni, and 6% for Pb. Moreover, using stable isotope methods, we determined metal Kd of SPM from these sites, which can be well predicted by the total organic carbon and iron content (R2 = 0.977). We calculated MFs using a Monte Carlo method. The calculated MFs are in the range 9.9-43 for Pb, 8.5-37 for Zn, 2.9-9.7 for Cu, 1.4-2.7 for Ni, and 1.1-1.6 for Cd, suggesting that dissolved-metal-based criteria values should be divided by MFs to provide adequate protection to aquatic life. This study provides foundational guidelines to refine water quality criteria in turbid waters and protect coastal ecosystems.


Asunto(s)
Bivalvos , Metales Pesados , Contaminantes Químicos del Agua , Animales , Calidad del Agua , Sedimentos Geológicos , Disponibilidad Biológica , Ecosistema , Cadmio , Plomo , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Agua , Ríos , Material Particulado/análisis , Isótopos
15.
BMC Infect Dis ; 24(1): 186, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347526

RESUMEN

OBJECTIVES: In this study, we describe the patterns of antibiotic prescription for neonates based on World Health Organization's (WHO) Essential Medicines List Access, Watch, and Reserve (AWaRe), and the Management of Antibiotic Classification (MAC) Guidelines in China. METHODS: One-day point-prevalence surveys (PPS) on antimicrobial prescriptions were conducted on behalf of hospitalized neonates in China from September 1 and November 30, annually from 2017 to 2019. RESULTS: Data was collected for a total of 2674 neonatal patients from 15 hospitals in 9 provinces across China of which 1520 were newborns who received at least one antibiotic agent. A total of 1943 antibiotic prescriptions were included in the analysis. The most commonly prescribed antibiotic was meropenem (11.8%). The most common reason for prescribing antibiotic to neonates was pneumonia (44.2%). There were 419 (21.6%), 1343 (69.1%) and 6 (0.3%) antibiotic prescriptions in the Access, Watch and Reserve groups, respectively. According to MAC Guidelines in China, there were 1090 (56.1%) antibiotic agents in the Restricted and 414 (21.3%) in the Special group. CONCLUSION: Broad-spectrum antibiotics included in the Watch and Special groups were likely to be overused in Chinese neonates.


Asunto(s)
Antibacterianos , Prescripciones de Medicamentos , Humanos , Recién Nacido , Prevalencia , Encuestas de Atención de la Salud , Antibacterianos/uso terapéutico , China/epidemiología
16.
Environ Res ; 249: 118497, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38365054

RESUMEN

Developing a photoelectric cathode capable of efficiently activating molecular oxygen to degrade pollutants is a coveted yet challenging goal. In pursuit of this, we synthesize a Fe doped porous carbon nitride catalyst (Fe-CN) using an ionothermal strategy and subsequently loaded it on the hydrophobic carbon felt (CF) to fabricate the Fe-CN/CF photoelectric cathode. This cathode benefits from the synergistic effects between the porous CN support and the highly dispersed Fe species, which enhance O2 absorption and activation. Additionally, the hydrophobic CF serves as a gas diffusion layer, accelerating O2 mass transfer. These features enable the Fe-CN/CF cathode to demonstrate notable photoelectrocatalytic (PEC) degradation efficiency. Specifically, under optimal conditions (cathodic bias of -0.3 VAg/AgCl, pH 7, and a catalyst loading of 3 mg/cm2), the system achieves a 76.4% removal rate of tetracycline (TC) within 60 min. The general application potential of this system is further underscored by its ability to remove approximately 98% of 4-chlorophenol (4-CP) and phenol under identical conditions. Subsequent investigations into the active species and degradation pathways reveal that 1O2 and h+ play dominant role during the PEC degradation process, leading to gradually breakdown of TC into less toxicity, smaller molecular intermediates. This work presents a straightforward yet effective strategy for constructing efficient PEC systems that leverage molecular oxygen activation to degrade pollutants.


Asunto(s)
Carbono , Hierro , Nitrilos , Oxígeno , Nitrilos/química , Oxígeno/química , Carbono/química , Hierro/química , Catálisis , Contaminantes Químicos del Agua/química , Porosidad , Interacciones Hidrofóbicas e Hidrofílicas , Electrodos , Técnicas Electroquímicas/métodos
17.
Anesth Analg ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38870069

RESUMEN

BACKGROUND: Increasing the temperature of intrathecal local anesthetics has been shown to increase the speed of onset and block height of spinal anesthesia. However, how this influences dose requirement has not been fully quantified. The aim of this study was to determine and compare the effective dose for anesthesia for cesarean delivery in 50% of patients (ED50) of intrathecal bupivacaine given at temperatures of 37 °C (body temperature) or 24 °C (room temperature). METHODS: Eighty healthy parturients having elective cesarean delivery under combined spinal-epidural anesthesia were randomly assigned to receive intrathecal hyperbaric bupivacaine stored at 37 °C (body temperature group) or 24 °C (room temperature group). The first subject in each group received a bupivacaine dose of 10 mg. The dose for each subsequent subject in each group was varied with an increment or decrement of 1 mg based on the response (effective or noneffective) of the previous subject. Patients for whom the dose was noneffective received epidural supplementation after data collection with lidocaine 2% as required until anesthesia was sufficient for surgery. Values for ED50 were calculated using modified up-down sequential analysis with probit analysis applied as a backup sensitivity analysis. These values were compared and the relative mean potency was calculated. RESULTS: The ED50 (mean [95% confidence interval, CI]) of intrathecal hyperbaric bupivacaine was lower in the body temperature group (6.7 [5.7-7.6] mg) compared with the room temperature group (8.1 [7.7-8.6] mg) (P < .05). The relative potency ratio for intrathecal bupivacaine for the room temperature group versus the body temperature group was 0.84 (95% CI, 0.77-0.93). CONCLUSIONS: Warming hyperbaric bupivacaine to body temperature reduced the dose requirement for spinal anesthesia for cesarean delivery by approximately 16% (95% CI, 7%-23%).

18.
BMC Genomics ; 24(1): 269, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208617

RESUMEN

BACKGROUND: Seagull as a migratory wild bird has become most popular species in southwest China since 1980s. Previously, we analyzed the gut microbiota and intestinal pathogenic bacteria configuration for this species by using 16S rRNA sequencing and culture methods. To continue in-depth research on the gut microbiome of migratory seagulls, the metagenomics, DNA virome and RNA virome were both investigated for their gut microbial communities of abundance and diversity in this study. RESULTS: The metagenomics results showed 99.72% of total species was bacteria, followed by viruses, fungi, archaea and eukaryota. In particular, Shigella sonnei, Escherichia albertii, Klebsiella pneumonia, Salmonella enterica and Shigella flexneri were the top distributed taxa at species level. PCoA, NMDS, and statistics indicated some drug resistant genes, such as adeL, evgS, tetA, PmrF, and evgA accumulated as time went by from November to January of the next year, and most of these genes were antibiotic efflux. DNA virome composition demonstrated that Caudovirales was the most abundance virus, followed by Cirlivirales, Geplafuvirales, Petitvirales and Piccovirales. Most of these phages corresponded to Enterobacteriaceae and Campylobacteriaceae bacterial hosts respectively. Caliciviridae, Coronaviridae and Picornaviridae were the top distributed RNA virome at family level of this migratory animal. Phylogenetic analysis indicated the sequences of contigs of Gammacoronavirus and Deltacoronavirus had highly similarity with some coronavirus references. CONCLUSIONS: In general, the characteristics of gut microbiome of migratory seagulls were closely related to human activities, and multiomics still revealed the potential public risk to human health.


Asunto(s)
Microbioma Gastrointestinal , Virus , Animales , Humanos , Microbioma Gastrointestinal/genética , Metagenómica , Filogenia , ARN Ribosómico 16S/genética , Heces/microbiología , Virus/genética , Bacterias/genética , ADN
19.
Anal Chem ; 95(5): 2942-2948, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36691879

RESUMEN

Visual electrochemiluminescence (ECL) biosensors do not need complex instruments or well-trained operators, which is regarded as an ideal choice for portable and low-cost detection. But traditional visual ECL biosensors are based on the change in ECL intensity, which is easily affected by environmental factors and signal acquisition processes. In this work, a visual ECL biosensor chip based on distance readout has been developed for the first time. The chip is composed of a square detection region and a visual channel region, which are modified with graphene oxide (GO) and gold nanoparticles (AuNPs)@Ti3C2 nanocomposites, respectively. Target molecules can release aptamers adsorbed on the GO surface of the detection region and further change the electrode potential of the visual channel region, which can determine the length of the long channel that generates visible ECL signals. The application of AuNPs@Ti3C2 nanocomposites can effectively enhance ECL intensity by six times. Through the unique design of the sensor chip, quantification detection can be achieved based on the length change instead of the traditional intensity change. This visual ECL sensor is successfully applied for deoxynivalenol toxin detection in actual samples, demonstrating that the introduction of the distance readout strategy into ECL sensing has a good prospect in on-site testing.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Oro , Mediciones Luminiscentes , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
20.
Small ; : e2308195, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072819

RESUMEN

Cellulose-based triboelectric nanogenerators (TENGs) have attracted widespread attention due to the low cost and environmentally friendly characteristics of cellulose. However, achieving high electrical energy output from these generators still presents significant challenges. Here, cellulose is dissolved-regenerated to form a composite aerogel with high specific surface area, in which cellulose-based composites with excellent negative triboelectric properties are developed by coupling the rich 3D network structure of the regenerated cellulose aerogel, modified barium titanate, and poly(vinylidene fluoride). The TENGs assembled from the composite materials exhibit an output voltage of 1040 V and a current of 1.165 mA at an external force of 8 N and a frequency of 4 Hz, outperforming all cellulose-based negative triboelectric materials. In addition, the nanogenerators have a stable electrical energy output capacity, with no significant property degradation in 100 000 contact-separation tests. The excellent electrical output property of the composite materials enables them to harvest energy from human movement and waterdrops, demonstrating their great application prospects in wearable devices, energy harvesting devices, self-powered sensors, and other fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA