Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Ann Noninvasive Electrocardiol ; 19(3): 217-25, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24252119

RESUMEN

BACKGROUND: Automatic detection of atrial fibrillation (AF) in electrocardiograms (ECGs) is beneficial for AF diagnosis, therapy, and management. In this article, a novel method of AF detection is introduced. Most current methods only utilize the RR interval as a critical parameter to detect AF; thus, these methods commonly confuse AF with other arrhythmias. METHODS: We used the average number of f waves in a TQ interval as a characteristic parameter in our robust, real-time AF detection method. Three types of clinical ECG data, including ECGs from normal, AF, and non-AF arrhythmia subjects, were downloaded from multiple open access databases to validate the proposed method. RESULTS: The experimental results suggested that the method could distinguish between AF and normal ECGs with accuracy, sensitivity, and positive predictive values (PPVs) of 93.67%, 94.13%, and 98.69%, respectively. These values are comparable to those of related methods. The method was also able to distinguish between AF and non-AF arrhythmias and had performance indexes (accuracy 94.62%, sensitivity 94.13%, and PPVs 97.67%) that were considerably better than those of other methods. CONCLUSIONS: Our proposed method has prospects as a practical tool enabling clinical diagnosis, treatment, and monitoring of AF.


Asunto(s)
Fibrilación Atrial/diagnóstico , Fibrilación Atrial/fisiopatología , Electrocardiografía/métodos , Algoritmos , Sistemas de Computación , Bases de Datos Factuales , Humanos , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
2.
Food Sci Nutr ; 12(2): 765-775, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370083

RESUMEN

Formulas containing intact cow milk protein are appropriate alternatives when human milk (HM) is not feasible. However, for babies with a physician-diagnosed cow milk protein allergy (CMPA), hydrolyzed formulas are needed. We conducted a 3-month, open-label, nonrandomized concurrent controlled trial (ChiCTR2100046909) between June 2021 and October 2022 in Qingdao City, China. In this study, CMPA toddlers were fed with a partially hydrolyzed formula containing synbiotics (pHF, n = 43) and compared with healthy toddlers fed a regular intact protein formula (IF, n = 45) or HM (n = 21). The primary endpoint was weight gain; the secondary endpoints were changes in body length and head circumference of both CMPA and healthy toddlers after 3-month feeding; and the exploratory outcomes were changes in gut microbiota composition. After 3 months, there were no significant group differences for length-for-age, weight-for-age, or head circumference-for-age Z scores. In the gut microbiota, pHF feeding increased its richness and diversity, similar to those of IF-fed and HM-fed healthy toddlers. Compared with healthy toddlers, the toddlers with CMPA showed an increased abundance of phylum Bacteroidota, Firmicutes, class Clostridia, and Bacteroidia, and a decreased abundance of class Negativicutes, while pHF feeding partly eliminated these original differences. Moreover, pHF feeding increased the abundance of short-chain fatty acid producers. Our data suggested that this pHF partly simulated the beneficial effects of HM and shifted the gut microbiota of toddlers with CMPA toward that of healthy individuals. In conclusion, this synbiotic-containing pHF might be an appropriate alternative for toddlers with CMPA.

3.
Interdiscip Sci ; 15(1): 1-14, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36763314

RESUMEN

As a well-established technique, DNA synthesis offers interesting possibilities for designing multifunctional nanodevices. The micro-processing system of modern semiconductor circuits is dependent on strategies organized on silicon chips to achieve the speedy transmission of substances or information. Similarly, spatially localized structures allow for fixed DNA molecules in close proximity to each other during the synthesis of molecular circuits, thus providing a different strategy that of opening up a remarkable new area of inquiry for researchers. Herein, the Visual DSD (DNA strand displacement) modeling language was used to design and analyze the spatially organized DNA reaction network. The execution rules depend on the hybridization reaction caused by directional complementary nucleotide sequences. A series of DNA strand displacement calculations were organized on the locally coded travel track, and autonomous movement and addressing operations are gradually realized. The DNA nanodevice operates in this manner follows the embedded "molecular program", which improves the reusability and scalability of the same sequence domain in different contexts. Through the communication between various building blocks, the DNA device-carrying the target molecule moves in a controlled manner along the programmed track. In this way, a variety of molecular functional group transport and specific partition storage can be realized. The simulation results of the visual DSD tool provide qualitative and quantitative proof for the operation of the system.


Asunto(s)
Computadores Moleculares , ADN , Simulación por Computador , ADN/química , Hibridación de Ácido Nucleico
4.
Comb Chem High Throughput Screen ; 25(4): 651-657, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33593254

RESUMEN

BACKGROUND: Molecular logic gate always makes use of fluorescent dyes to realize fluorescence signals. The labeling of the fluorophore is relatively expensive, resulting in low yield, and singly labeled impurities affect the affinity between the target and the aptamer. Label-free fluorescent aptamer biosensor strategy has attracted widespread interest due to lower cost and simplicity. OBJECTIVE: Herein, we have designed an AND logic gate fluorescent aptasensor for detecting carbohydrate antigen 15-3(CA15-3) based on label-free fluorescence signal output. MATERIALS AND METHODS: A hairpin DNA probe consists of CA15-3 aptamer and partly anti-CA15- 3 aptamer sequences as a long stem and G-rich sequences of the middle ring as a quadruplexforming oligomer. G-rich sequences can fold into a quadruplex by K+, and then G-quadruplex interacts specifically with N-methylmesoporphyrin IX(NMM), leading to a dramatic increase in fluorescence of NMM. With CA15-3 and NMM as the two inputs, the fluorescence intensity of the NMM is the output signal. Lacking CA15-3 or NMM, there is no significant fluorescence enhancement, and the output of the signal is "0". The fluorescence signal dramatically increases and the output of the signal is "1" only when CA15-3 protein and NMM are added at the same time. RESULTS: This biosensor strategy was observed to possess selectivity and high sensitivity for detecting CA15-3 protein from 10 to 500 U mL-1 and the detection limit was found to be 10 U mL-1, which also showed good reproducibility in spiked human serum. CONCLUSION: In summary, the proposed AND logic gate fluorescent aptasensor could specifically detect CA15-3.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , G-Cuádruplex , Grafito , Técnicas Biosensibles/métodos , Carbohidratos , Colorantes Fluorescentes , Humanos , Límite de Detección , Reproducibilidad de los Resultados , Espectrometría de Fluorescencia/métodos
5.
Anal Sci ; 37(6): 905-909, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33162412

RESUMEN

Herein, we designed a label-free fluorescent aptasensor based on triple-helix DNA and G-quadruplex for carbohydrate antigen (CA15-3) detection. The triplex-helix structure can be formed with inserted G-rich DNA (IG) and aptamer DNA (Apt), which like a "lock" to lock the G-rich sequences. The CA15-3 was the "key", which specifically combined with aptamer sequences of Apt, resulting in liberating IG from the triplex-helix "lock". Then, the G-rich sequences of IG were formed into G-quadruplex and specifically interacted with N-methylmesoporphyrin IX (NMM), which greatly enhanced the fluorescence of the solution. However, when the "key" did not exist, the "lock" was fastened and fluorescence intensity did not change. With this proposed method, the concentration of CA15-3 can be effectively detected from 0.01 to 5 U mL-1 with a detection limit (LOD) of 0.01 U mL-1. Furthermore, this proposed biosensor can be applied to spiked human serum with great precision and reproducibility.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , G-Cuádruplex , ADN/genética , Fluorescencia , Colorantes Fluorescentes , Humanos , Límite de Detección , Reproducibilidad de los Resultados , Espectrometría de Fluorescencia
6.
Toxins (Basel) ; 12(6)2020 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-32517279

RESUMEN

The monitoring and control of mycotoxins has caused widespread concern due to their adverse effects on human health. In this research, a simple, sensitive and non-label fluorescent aptasensor has been reported for mycotoxin ochratoxin A (OTA) detection based on high selectivity of aptamers and amplification of non-enzyme hybridization chain reaction (HCR). After the introduction of OTA, the aptamer portion of hairpin probe H1 will combine with OTA to form OTA-aptamer complexes. Subsequently, the remainder of the opened H1 will act as an initiator for the HCR between the two hairpin probes, causing H1 and H2 to be sequentially opened and assembled into continuous DNA duplexes embedded with numerous G-quadruplexes, leading to a significant enhancement in fluorescence signal after binding with N-methyl-mesoporphyrin IX (NMM). The proposed sensing strategy can detect OTA with concentration as low as 4.9 pM. Besides, satisfactory results have also been obtained in the tests of actual samples. More importantly, the thermodynamic properties of nucleic acid chains in the monitoring platform were analyzed and the reaction processes and conditions were simulated before carrying out biological experiments, which theoretically proved the feasibility and simplified subsequent experimental operations. Therefore, the proposed method possess a certain application value in terms of monitoring mycotoxins in food samples and improving the quality control of food security.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles , Colorantes Fluorescentes/química , G-Cuádruplex , Mesoporfirinas/química , Ocratoxinas/análisis , Aptámeros de Nucleótidos/genética , Fluorometría
7.
Oncogene ; 39(7): 1514-1526, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31673069

RESUMEN

Cancer immune surveillance is an important host protection process that inhibits carcinogenesis and maintains cellular homeostasis. The major histocompatibility complex class I-related molecules A and B (MICA and MICB) are NKG2D ligands that play important roles in tumor immune surveillance. In the present study, by a combined bioinformatics prediction and experimental approach, we identify BCL11B 3'-UTR as a putative MICA and MICB ceRNA. We demonstrate in several human cell lines of different origins that the knockdown of BCL11B downregulates surface expression of MICA and MICB. Furthermore, we demonstrate miRNA dependency of BCL11B-mediated MICA and MICB regulation in Dicer knockdown HCT116 cells. In addition, MICA/B-targeting miRNAs (miR-17, miR-93, miR-20a, miR-20b, miR-106a, and miR-106b) repressed the expression of BCL11B by targeting its 3'-UTR. Moreover, we showed that the BCL11B knockdown-mediated downregulation of MICA/B resulted in reduced NK cell elimination in vitro and in vivo through reduced recognition of NKG2D. Of particular significance, BCL11B displays tumor-suppressive properties. The expression of BCL11B is downregulated in colon cancer tissues and associated with a reduced median survival of colon cancer patients. Taken together, our study revealed a new mechanism of BCL11B that prevents immune evasion of cancerous cells by upregulation of the NKG2D ligands MICA and MICB in a ceRNA manner.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunidad/genética , Antígenos de Histocompatibilidad Menor/metabolismo , ARN/genética , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Técnicas de Silenciamiento del Gen , Células HCT116 , Células HT29 , Humanos , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética
8.
J Invest Dermatol ; 140(2): 465-476.e11, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31376385

RESUMEN

Venous ulcers are the most common type of human chronic nonhealing wounds and are stalled in a constant and excessive inflammatory state. The molecular mechanisms underlying the chronic wound inflammation remain elusive. Moreover, little is known about the role of regulatory RNAs, such as microRNAs, in the pathogenesis of venous ulcers. We found that both microRNA (miR)-34a and miR-34c were upregulated in the wound-edge epidermal keratinocytes of venous ulcers compared with normal wounds or the skin. In keratinocytes, miR-34a and miR-34c promoted inflammatory chemokine and cytokine production. In wounds of wild-type mice, miR-34a-mimic treatment enhanced inflammation and delayed healing. To further explore how miR-34 functions, LGR4 was identified as a direct target mediating the proinflammatory function of miR-34a and miR-34c. Interestingly, impaired wound closure with enhanced inflammation was also observed in Lgr4 knockout mice. Mechanistically, the miR-34-LGR4 axis regulated GSK-3ß-induced p65 serine 468 phosphorylation, changing the activity of the NF-κB signaling pathway. Collectively, the miR-34-LGR4 axis was shown to regulate keratinocyte inflammatory response, the deregulation of which may play a pathological role in venous ulcers.


Asunto(s)
MicroARNs/metabolismo , Receptores Acoplados a Proteínas G/genética , Úlcera Varicosa/inmunología , Cicatrización de Heridas/genética , Anciano , Anciano de 80 o más Años , Animales , Biopsia , Movimiento Celular/genética , Movimiento Celular/inmunología , Proliferación Celular/genética , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/inmunología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Voluntarios Sanos , Humanos , Queratinocitos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Fosforilación/genética , Fosforilación/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Piel/inmunología , Piel/patología , Factor de Transcripción ReIA/metabolismo , Úlcera Varicosa/patología , Cicatrización de Heridas/inmunología
9.
Cell Death Dis ; 10(5): 372, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31068580

RESUMEN

Although increasing evidence indicated that deregulation of microRNAs (miRNAs) contributed to tumor initiation and progression, but little is known about the biological role of miR-340 in ovarian cancer (OC). In this study, we found that miR-340 expression was downregulated in OC tissues compared with its expression in normal ovarian epithelium and endometrium, and treatment with 5-aza-2'-deoxycytidine (5-Aza-dC) or trichostatin A (TSA) increased miR-340 expression in OC cells. In addition, ectopic miR-340 expression inhibited OC cell growth and metastasis in vitro and in vivo. Four and a half LIM domains protein 2 (FHL2) was confirmed as a direct target of miR-340 and silencing FHL2 mimicked the effects of miR-340 in OC cells. Further mechanistic study showed that miR-340 inhibited the Wnt/ß-catenin pathway by targeting FHL2, as well as downstream cell cycle and epithelial-to-mesenchymal transition (EMT) signals in OC cells. Moreover, the greatest association between miR-340 and FHL2 was found in 481 ovarian serous cystadenocarcinoma tissues via pan-cancer analysis. Finally, we revealed that lower miR-340 or higher FHL2 was associated with poor OC patient outcomes. Our findings indicate that the miR-340-FHL2 axis regulates Wnt/ß-catenin signaling and is involved in tumorigenesis in OC. Therefore, manipulating the expression of miR-340 or its target genes is a potential strategy in OC therapy.


Asunto(s)
Proliferación Celular , Proteínas con Homeodominio LIM/metabolismo , MicroARNs/metabolismo , Proteínas Musculares/metabolismo , Neoplasias Ováricas/patología , Factores de Transcripción/metabolismo , Regiones no Traducidas 3' , Animales , Línea Celular Tumoral , Movimiento Celular , Cistadenocarcinoma/metabolismo , Cistadenocarcinoma/patología , Regulación hacia Abajo , Transición Epitelial-Mesenquimal , Femenino , Humanos , Proteínas con Homeodominio LIM/antagonistas & inhibidores , Proteínas con Homeodominio LIM/genética , Ratones , Ratones Desnudos , MicroARNs/química , MicroARNs/genética , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/genética , Neoplasias Ováricas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Vía de Señalización Wnt
10.
Exp Ther Med ; 13(3): 947-951, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28450924

RESUMEN

The aim of this study was to analyze the mutation rate of JAK2V617F, MPLW515L/K and CALR genes in adult patients with essential thrombocythemia (ET) and the accuracy of the combined detection by the receiver operating curve. Three hundred and forty-two cases with high-platelets (≥300×109/l) were consecutively selected. The patients were analyzed for routine blood examination, bone marrow biopsy and genetic testing. One hundred and fifty-four cases (45.03%) were diagnosed with ET and 188 cases of secondary thrombocythemia according to the hematopoietic and lymphoid tissue tumor classification standards of 2008. It was found that the mutant type of three genes showed three bands, whereas only one band for wild-type. The JAK2V617F and MPL mutations did not cause a change in the open reading frame and the CALR mutation resulted in its change. The mutation rate of JAK2V617F and CALR in ET group was significantly higher than that in the secondary thrombocythemia group (p<0.05). The positive mutation rate of MPL was only 4.55%. JAK2V617F-positive mutation alone was used to diagnose with ET. The area under the curve (AUC) was 0.721. The sensitivity was 72.4%, the specificity was 79.5% and the cut-off value was 0.25. When CALR-positive mutation alone was used to diagnose ET, the AUC, sensitivity, specificity and cut-off value were 0.664, 68.4, 82.4 and 0.09%, respectively. JAK2V617F combined with CALR mutation were used for diagnosis of ET. The AUC was 0.862, the sensitivity was 85.9%, the specificity was 87.8%, and the cut-off values were 0.21 and 0.07. In conclusion, the positive mutation rate of JAK2V617F and CALR in ET was higher, and the sensitivity, specificity and accuracy of the diagnosis of ET were significantly improved using the detection of JAK2V617F and CALR.

11.
Cell Death Dis ; 7(9): e2384, 2016 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-27685628

RESUMEN

The Fra-1 transcription factor is frequently upregulated in multiple types of tumors. Here we found that Fra-1 promotes miR-134 expression. miR-134 activates JNK and ERK by targeting SDS22, which in turn induces Fra-1 expression and leads to miR-134 upregulation. In addition, miR-134 augmented H2AX S139 phosphorylation by activating JNK and promoted non-homologous end joining (NHEJ)-mediated DNA repair. Therefore, ectopic miR-134 expression reduced chemosensitivity in ovarian cancer cells. Furthermore, miR-134 promotes cell proliferation, migration and invasion of ovarian cancer cells, and enhances tumor growth in vivo. Of particular significance, both Fra-1 and miR-134 are upregulated in ovarian cancer tissues, and Fra-1 and miR-134 expression is positively correlated. High levels of miR-134 expression were associated with a reduced median survival of ovarian cancer patients. Our study revealed that a Fra-1-miR-134 axis drives a positive feedback loop that amplifies ERK/JNK signaling and reduces chemosensitivity in ovarian cancer cells.


Asunto(s)
Antineoplásicos/uso terapéutico , Retroalimentación Fisiológica , MicroARNs/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Regiones no Traducidas 3'/genética , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Retroalimentación Fisiológica/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Desnudos , MicroARNs/genética , Invasividad Neoplásica , Neoplasias Ováricas/genética , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factor de Transcripción AP-1/metabolismo , Resultado del Tratamiento , Regulación hacia Arriba/efectos de los fármacos
12.
PLoS One ; 8(10): e76166, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24204599

RESUMEN

Permanent Atrial fibrillation (pmAF) has largely remained incurable since the existing information for explaining precise mechanisms underlying pmAF is not sufficient. Microarray analysis offers a broader and unbiased approach to identify and predict new biological features of pmAF. By considering the unbalanced sample numbers in most microarray data of case - control, we designed an asymmetric principal component analysis algorithm and applied it to re - analyze differential gene expression data of pmAF patients and control samples for predicting new biological features. Finally, we identified 51 differentially expressed genes using the proposed method, in which 42 differentially expressed genes are new findings compared with two related works on the same data and the existing studies. The enrichment analysis illustrated the reliability of identified differentially expressed genes. Moreover, we predicted three new pmAF - related signaling pathways using the identified differentially expressed genes via the KO-Based Annotation System. Our analysis and the existing studies supported that the predicted signaling pathways may promote the pmAF progression. The results above are worthy to do further experimental studies. This work provides some new insights into molecular features of pmAF. It has also the potentially important implications for improved understanding of the molecular mechanisms of pmAF.


Asunto(s)
Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Transducción de Señal , Redes Reguladoras de Genes , Humanos , Modelos Biológicos , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA