Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 23(9): e13731, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35920116

RESUMEN

Accurate coregistration of computed tomography (CT) and magnetic resonance (MR) imaging can provide clinically relevant and complementary information and can serve to facilitate multiple clinical tasks including surgical and radiation treatment planning, and generating a virtual Positron Emission Tomography (PET)/MR for the sites that do not have a PET/MR system available. Despite the long-standing interest in multimodality co-registration, a robust, routine clinical solution remains an unmet need. Part of the challenge may be the use of mutual information (MI) maximization and local phase difference (LPD) as similarity metrics, which have limited robustness, efficiency, and are difficult to optimize. Accordingly, we propose registering MR to CT by mapping the MR to a synthetic CT intermediate (sCT) and further using it in a sCT-CT deformable image registration (DIR) that minimizes the sum of squared differences. The resultant deformation field of a sCT-CT DIR is applied to the MRI to register it with the CT. Twenty-five sets of abdominopelvic imaging data are used for evaluation. The proposed method is compared to standard MI- and LPD-based methods, and the multimodality DIR provided by a state of the art, commercially available FDA-cleared clinical software package. The results are compared using global similarity metrics, Modified Hausdorff Distance, and Dice Similarity Index on six structures. Further, four physicians visually assessed and scored registered images for their registration accuracy. As evident from both quantitative and qualitative evaluation, the proposed method achieved registration accuracy superior to LPD- and MI-based methods and can refine the results of the commercial package DIR when using its results as a starting point. Supported by these, this manuscript concludes the proposed registration method is more robust, accurate, and efficient than the MI- and LPD-based methods.


Asunto(s)
Imagen por Resonancia Magnética , Tomografía Computarizada por Rayos X , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Imagen Multimodal , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X/métodos
2.
J Med Syst ; 43(5): 118, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30911929

RESUMEN

Artificial intelligence algorithms have been used in a wide range of applications in clinical aided diagnosis, such as automatic MR image segmentation and seizure EEG signal analyses. In recent years, many machine learning-based automatic MR brain image segmentation methods have been proposed as auxiliary methods of medical image analysis in clinical treatment. Nevertheless, many problems regarding precise medical images, which cannot be effectively utilized to improve partition performance, remain to be solved. Due to the poor contrast in grayscale images, the ambiguity and complexity of MR images, and individual variability, the performance of classic algorithms in medical image segmentation still needs improvement. In this paper, we introduce a distributed multitask fuzzy c-means (MT-FCM) clustering algorithm for MR brain image segmentation that can extract knowledge common among different clustering tasks. The proposed distributed MT-FCM algorithm can effectively exploit information common among different but related MR brain image segmentation tasks and can avoid the negative effects caused by noisy data that exist in some MR images. Experimental results on clinical MR brain images demonstrate that the distributed MT-FCM method demonstrates more desirable performance than the classic signal task method.


Asunto(s)
Encéfalo/diagnóstico por imagen , Lógica Difusa , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Humanos , Reproducibilidad de los Resultados
3.
Inf Sci (N Y) ; 422: 51-76, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29628529

RESUMEN

We introduce a new, semi-supervised classification method that extensively exploits knowledge. The method has three steps. First, the manifold regularization mechanism, adapted from the Laplacian support vector machine (LapSVM), is adopted to mine the manifold structure embedded in all training data, especially in numerous label-unknown data. Meanwhile, by converting the labels into pairwise constraints, the pairwise constraint regularization formula (PCRF) is designed to compensate for the few but valuable labelled data. Second, by further combining the PCRF with the manifold regularization, the precise manifold and pairwise constraint jointly regularized formula (MPCJRF) is achieved. Third, by incorporating the MPCJRF into the framework of the conventional SVM, our approach, referred to as semi-supervised classification with extensive knowledge exploitation (SSC-EKE), is developed. The significance of our research is fourfold: 1) The MPCJRF is an underlying adjustment, with respect to the pairwise constraints, to the graph Laplacian enlisted for approximating the potential data manifold. This type of adjustment plays the correction role, as an unbiased estimation of the data manifold is difficult to obtain, whereas the pairwise constraints, converted from the given labels, have an overall high confidence level. 2) By transforming the values of the two terms in the MPCJRF such that they have the same range, with a trade-off factor varying within the invariant interval [0, 1), the appropriate impact of the pairwise constraints to the graph Laplacian can be self-adaptively determined. 3) The implication regarding extensive knowledge exploitation is embodied in SSC-EKE. That is, the labelled examples are used not only to control the empirical risk but also to constitute the MPCJRF. Moreover, all data, both labelled and unlabelled, are recruited for the model smoothness and manifold regularization. 4) The complete framework of SSC-EKE organically incorporates multiple theories, such as joint manifold and pairwise constraint-based regularization, smoothness in the reproducing kernel Hilbert space, empirical risk minimization, and spectral methods, which facilitates the preferable classification accuracy as well as the generalizability of SSC-EKE.

4.
Knowl Based Syst ; 130: 33-50, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30050232

RESUMEN

We study a novel fuzzy clustering method to improve the segmentation performance on the target texture image by leveraging the knowledge from a prior texture image. Two knowledge transfer mechanisms, i.e. knowledge-leveraged prototype transfer (KL-PT) and knowledge-leveraged prototype matching (KL-PM) are first introduced as the bases. Applying them, the knowledge-leveraged transfer fuzzy C-means (KL-TFCM) method and its three-stage-interlinked framework, including knowledge extraction, knowledge matching, and knowledge utilization, are developed. There are two specific versions: KL-TFCM-c and KL-TFCM-f, i.e. the so-called crisp and flexible forms, which use the strategies of maximum matching degree and weighted sum, respectively. The significance of our work is fourfold: 1) Owing to the adjustability of referable degree between the source and target domains, KL-PT is capable of appropriately learning the insightful knowledge, i.e. the cluster prototypes, from the source domain; 2) KL-PM is able to self-adaptively determine the reasonable pairwise relationships of cluster prototypes between the source and target domains, even if the numbers of clusters differ in the two domains; 3) The joint action of KL-PM and KL-PT can effectively resolve the data inconsistency and heterogeneity between the source and target domains, e.g. the data distribution diversity and cluster number difference. Thus, using the three-stage-based knowledge transfer, the beneficial knowledge from the source domain can be extensively, self-adaptively leveraged in the target domain. As evidence of this, both KL-TFCM-c and KL-TFCM-f surpass many existing clustering methods in texture image segmentation; and 4) In the case of different cluster numbers between the source and target domains, KL-TFCM-f proves higher clustering effectiveness and segmentation performance than does KL-TFCM-c.

5.
Pattern Recognit ; 50: 155-177, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27275022

RESUMEN

Conventional, soft-partition clustering approaches, such as fuzzy c-means (FCM), maximum entropy clustering (MEC) and fuzzy clustering by quadratic regularization (FC-QR), are usually incompetent in those situations where the data are quite insufficient or much polluted by underlying noise or outliers. In order to address this challenge, the quadratic weights and Gini-Simpson diversity based fuzzy clustering model (QWGSD-FC), is first proposed as a basis of our work. Based on QWGSD-FC and inspired by transfer learning, two types of cross-domain, soft-partition clustering frameworks and their corresponding algorithms, referred to as type-I/type-II knowledge-transfer-oriented c-means (TI-KT-CM and TII-KT-CM), are subsequently presented, respectively. The primary contributions of our work are four-fold: (1) The delicate QWGSD-FC model inherits the most merits of FCM, MEC and FC-QR. With the weight factors in the form of quadratic memberships, similar to FCM, it can more effectively calculate the total intra-cluster deviation than the linear form recruited in MEC and FC-QR. Meanwhile, via Gini-Simpson diversity index, like Shannon entropy in MEC, and equivalent to the quadratic regularization in FC-QR, QWGSD-FC is prone to achieving the unbiased probability assignments, (2) owing to the reference knowledge from the source domain, both TI-KT-CM and TII-KT-CM demonstrate high clustering effectiveness as well as strong parameter robustness in the target domain, (3) TI-KT-CM refers merely to the historical cluster centroids, whereas TII-KT-CM simultaneously uses the historical cluster centroids and their associated fuzzy memberships as the reference. This indicates that TII-KT-CM features more comprehensive knowledge learning capability than TI-KT-CM and TII-KT-CM consequently exhibits more perfect cross-domain clustering performance and (4) neither the historical cluster centroids nor the historical cluster centroid based fuzzy memberships involved in TI-KT-CM or TII-KT-CM can be inversely mapped into the raw data. This means that both TI-KT-CM and TII-KT-CM can work without disclosing the original data in the source domain, i.e. they are of good privacy protection for the source domain. In addition, the convergence analyses regarding both TI-KT-CM and TII-KT-CM are conducted in our research. The experimental studies thoroughly evaluated and demonstrated our contributions on both synthetic and real-life data scenarios.

6.
IEEE/ACM Trans Comput Biol Bioinform ; 20(4): 2387-2397, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35025748

RESUMEN

With the development of sensors, more and more multimodal data are accumulated, especially in biomedical and bioinformatics fields. Therefore, multimodal data analysis becomes very important and urgent. In this study, we combine multi-kernel learning and transfer learning, and propose a feature-level multi-modality fusion model with insufficient training samples. To be specific, we firstly extend kernel Ridge regression to its multi-kernel version under the lp-norm constraint to explore complementary patterns contained in multimodal data. Then we use marginal probability distribution adaption to minimize the distribution differences between the source domain and the target domain to solve the problem of insufficient training samples. Based on epilepsy EEG data provided by the University of Bonn, we construct 12 multi-modality & transfer scenarios to evaluate our model. Experimental results show that compared with baselines, our model performs better on most scenarios.

7.
Comput Intell Neurosci ; 2022: 4926124, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35341171

RESUMEN

Deep learning-based image compression methods have made significant achievements recently, of which the two key components are the entropy model for latent representations and the encoder-decoder network. Both the inaccurate estimation of the entropy estimation model and the existence of information redundancy in latent representations lead to a reduction in the compression efficiency. To address these issues, the study suggests an image compression method based on a hybrid domain attention mechanism and postprocessing improvement. This study embeds hybrid domain attention modules as nonlinear transformers in both the main encoder-decoder network and the hyperprior network, aiming at constructing more compact latent features and hyperpriors and then model the latent features as parametric Gaussian-scale mixture models to obtain more precise entropy estimation. In addition, we propose a solution to the errors introduced by quantization in image compression by adding an inverse quantization module. On the decoding side, we also provide a postprocessing enhancement module to further increase image compression performance. The experimental results show that the peak signal-to-noise rate (PSNR) and multiscale structural similarity (MS-SSIM) of the proposed method are higher than those of traditional compression methods and advanced neural network-based methods.


Asunto(s)
Compresión de Datos , Suministros de Energía Eléctrica , Entropía , Redes Neurales de la Computación , Distribución Normal
8.
Math Biosci Eng ; 19(1): 271-286, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34902991

RESUMEN

Supply chain network is important for the enterprise to improve the operation and management, but has become more complicated to optimize in reality. With the consideration of multiple objectives and constraints, this paper proposes a constrained large-scale multi-objective supply chain network (CLMSCN) optimization model. This model is to minimize the total operation cost (including the costs of production, transportation, and inventory) and to maximize the customer satisfaction under the capacity constraints. Besides, a coevolutionary algorithm based on the auxiliary population (CAAP) is proposed, which uses two populations to solve the CLMSCN problem. One population is to solve the original complex problem, and the other population is to solve the problem without any constraints. If the infeasible solutions are generated in the first population, a linear repair operator will be used to improve the feasibility of these solutions. To validate the effectivity of the CAAP algorithm, the experiment is conducted on the randomly generated instances with three different problem scales. The results show that the CAAP algorithm can outperform other compared algorithms, especially on the large-scale instances.


Asunto(s)
Algoritmos , Transportes
9.
Math Biosci Eng ; 19(6): 5925-5956, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35603385

RESUMEN

The closed-loop supply chain (CLSC) plays an important role in sustainable development and can help to increase the economic benefits of enterprises. The optimization for the CLSC network is a complicated problem, since it often has a large problem scale and involves multiple constraints. This paper proposes a general CLSC model to maximize the profits of enterprises by determining the transportation route and delivery volume. Due to the complexity of the multi-constrained and large-scale model, a genetic algorithm with two-step rank-based encoding (GA-TRE) is developed to solve the problem. Firstly, a two-step rank-based encoding is designed to handle the constraints and increase the algorithm efficiency, and the encoding scheme is also used to improve the genetic operators, including crossover and mutation. The first step of encoding is to plan the routes and predict their feasibility according to relevant constraints, and the second step is to set the delivery volume based on the feasible routes using a rank-based method to achieve greedy solutions. Besides, a new mutation operator and an adaptive population disturbance mechanism are designed to increase the diversity of the population. To validate the efficiency of the proposed algorithm, six heuristic algorithms are compared with GA-TRE by using different instances with three problem scales. The results show that GA-TRE can obtain better solutions than the competitors, especially on large-scale instances.


Asunto(s)
Algoritmos , Transportes
10.
J Healthc Eng ; 2022: 4138666, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222885

RESUMEN

Knee osteoarthritis (OA) is a deliberating joint disorder characterized by cartilage loss that can be captured by imaging modalities and translated into imaging features. Observing imaging features is a well-known objective assessment for knee OA disorder. However, the variety of imaging features is rarely discussed. This study reviews knee OA imaging features with respect to different imaging modalities for traditional OA diagnosis and updates recent image-based machine learning approaches for knee OA diagnosis and prognosis. Although most studies recognized X-ray as standard imaging option for knee OA diagnosis, the imaging features are limited to bony changes and less sensitive to short-term OA changes. Researchers have recommended the usage of MRI to study the hidden OA-related radiomic features in soft tissues and bony structures. Furthermore, ultrasound imaging features should be explored to make it more feasible for point-of-care diagnosis. Traditional knee OA diagnosis mainly relies on manual interpretation of medical images based on the Kellgren-Lawrence (KL) grading scheme, but this approach is consistently prone to human resource and time constraints and less effective for OA prevention. Recent studies revealed the capability of machine learning approaches in automating knee OA diagnosis and prognosis, through three major tasks: knee joint localization (detection and segmentation), classification of OA severity, and prediction of disease progression. AI-aided diagnostic models improved the quality of knee OA diagnosis significantly in terms of time taken, reproducibility, and accuracy. Prognostic ability was demonstrated by several prediction models in terms of estimating possible OA onset, OA deterioration, progressive pain, progressive structural change, progressive structural change with pain, and time to total knee replacement (TKR) incidence. Despite research gaps, machine learning techniques still manifest huge potential to work on demanding tasks such as early knee OA detection and estimation of future disease events, as well as fundamental tasks such as discovering the new imaging features and establishment of novel OA status measure. Continuous machine learning model enhancement may favour the discovery of new OA treatment in future.


Asunto(s)
Osteoartritis de la Rodilla , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Aprendizaje Automático , Imagen por Resonancia Magnética , Osteoartritis de la Rodilla/diagnóstico por imagen , Dolor , Reproducibilidad de los Resultados
11.
Front Public Health ; 10: 898254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677770

RESUMEN

In this review, current studies on hospital readmission due to infection of COVID-19 were discussed, compared, and further evaluated in order to understand the current trends and progress in mitigation of hospital readmissions due to COVID-19. Boolean expression of ("COVID-19" OR "covid19" OR "covid" OR "coronavirus" OR "Sars-CoV-2") AND ("readmission" OR "re-admission" OR "rehospitalization" OR "rehospitalization") were used in five databases, namely Web of Science, Medline, Science Direct, Google Scholar and Scopus. From the search, a total of 253 articles were screened down to 26 articles. In overall, most of the research focus on readmission rates than mortality rate. On the readmission rate, the lowest is 4.2% by Ramos-Martínez et al. from Spain, and the highest is 19.9% by Donnelly et al. from the United States. Most of the research (n = 13) uses an inferential statistical approach in their studies, while only one uses a machine learning approach. The data size ranges from 79 to 126,137. However, there is no specific guide to set the most suitable data size for one research, and all results cannot be compared in terms of accuracy, as all research is regional studies and do not involve data from the multi region. The logistic regression is prevalent in the research on risk factors of readmission post-COVID-19 admission, despite each of the research coming out with different outcomes. From the word cloud, age is the most dominant risk factor of readmission, followed by diabetes, high length of stay, COPD, CKD, liver disease, metastatic disease, and CAD. A few future research directions has been proposed, including the utilization of machine learning in statistical analysis, investigation on dominant risk factors, experimental design on interventions to curb dominant risk factors and increase the scale of data collection from single centered to multi centered.


Asunto(s)
COVID-19 , Readmisión del Paciente , COVID-19/epidemiología , Humanos , Modelos Logísticos , Aprendizaje Automático , Factores de Riesgo , Estados Unidos
12.
Comput Intell Neurosci ; 2022: 9167707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498184

RESUMEN

In the late December of 2019, a novel coronavirus was discovered in Wuhan, China. In March 2020, WHO announced this epidemic had become a global pandemic and that the novel coronavirus may be mild to most people. However, some people may experience a severe illness that results in hospitalization or maybe death. COVID-19 classification remains challenging due to the ambiguity and similarity with other known respiratory diseases such as SARS, MERS, and other viral pneumonia. The typical symptoms of COVID-19 are fever, cough, chills, shortness of breath, loss of smell and taste, headache, sore throat, chest pains, confusion, and diarrhoea. This research paper suggests the concept of transfer learning using the deterministic algorithm in all binary classification models and evaluates the performance of various CNN architectures. The datasets of 746 CT images of COVID-19 and non-COVID-19 were divided for training, validation, and testing. Various augmentation techniques were applied to increase the number of datasets except for testing images. The images were then pretrained using CNN to obtain a binary class. ResNeXt101 and ResNet152 have the best F1 score of 0.978 and 0.938, whereas GoogleNet has an F1 score of 0.762. ResNeXt101 and ResNet152 have an accuracy of 97.81% and 93.80%. ResNeXt101, DenseNet201, and ResNet152 have 95.71%, 93.81%, and 90% sensitivity, whereas ResNeXt101, ResNet101, and ResNet152 have 100%, 99.58%, and 98.33 specificity, respectively.


Asunto(s)
COVID-19 , COVID-19/diagnóstico por imagen , Humanos , Redes Neurales de la Computación , Pandemias , SARS-CoV-2 , Tomografía Computarizada por Rayos X
13.
Comput Math Methods Med ; 2021: 9976440, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567237

RESUMEN

Texture analysis (TA) techniques derived from T2-weighted imaging (T2WI) and apparent diffusion coefficient (ADC) maps of rectal cancer can both achieve good diagnosis performance. This study was to compare TA from T2WI and ADC maps between different pathological T and N stages to confirm which TA analysis is better in diagnosis performance. 146 patients were enrolled in this study. Tumor TA was performed on every patient's T2WI and ADC maps, respectively; then, skewness, kurtosis, uniformity, entropy, energy, inertia, and correlation were calculated. Our results demonstrated that those significant different parameters derived from T2WI had better diagnostic performance than those from ADC maps in differentiating pT3b-4 and pN1-2 stage tumors. In particular, the energy derived from T2WI was an optimal parameter for diagnostic efficiency. High-resolution T2WI plays a key point in the local stage of rectal cancer; thus, TA derived from T2WI may be a more useful tool to aid radiologists and surgeons in selecting treatment.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/estadística & datos numéricos , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Imagen por Resonancia Magnética/estadística & datos numéricos , Neoplasias del Recto/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , China , Biología Computacional , Femenino , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Neoplasias del Recto/patología , Estudios Retrospectivos
14.
EURASIP J Adv Signal Process ; 2021(1): 50, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335736

RESUMEN

Coronavirus disease of 2019 or COVID-19 is a rapidly spreading viral infection that has affected millions all over the world. With its rapid spread and increasing numbers, it is becoming overwhelming for the healthcare workers to rapidly diagnose the condition and contain it from spreading. Hence it has become a necessity to automate the diagnostic procedure. This will improve the work efficiency as well as keep the healthcare workers safe from getting exposed to the virus. Medical image analysis is one of the rising research areas that can tackle this issue with higher accuracy. This paper conducts a comparative study of the use of the recent deep learning models (VGG16, VGG19, DenseNet121, Inception-ResNet-V2, InceptionV3, Resnet50, and Xception) to deal with the detection and classification of coronavirus pneumonia from pneumonia cases. This study uses 7165 chest X-ray images of COVID-19 (1536) and pneumonia (5629) patients. Confusion metrics and performance metrics were used to analyze each model. Results show DenseNet121 (99.48% of accuracy) showed better performance when compared with the other models in this study.

15.
J Healthc Eng ; 2021: 9208138, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765104

RESUMEN

Quality of care data has gained transparency captured through various measurements and reporting. Readmission measure is especially related to unfavorable patient outcomes that directly bends the curve of healthcare cost. Under the Hospital Readmission Reduction Program, payments to hospitals were reduced for those with excessive 30-day rehospitalization rates. These penalties have intensified efforts from hospital stakeholders to implement strategies to reduce readmission rates. One of the key strategies is the deployment of predictive analytics stratified by patient population. The recent research in readmission model is focused on making its prediction more accurate. As cost-saving improvements through artificial intelligent-based health solutions are expected, the broad economic impact of such digital tool remains unknown. Meanwhile, reducing readmission rate is associated with increased operating expenses due to targeted interventions. The increase in operating margin can surpass native readmission cost. In this paper, we propose a quantized evaluation metric to provide a methodological mean in assessing whether a predictive model represents cost-effective way of delivering healthcare. Herein, we evaluate the impact machine learning has had on transitional care and readmission with proposed metric. The final model was estimated to produce net healthcare savings at over $1 million given a 50% rate of successfully preventing a readmission.


Asunto(s)
Hospitales , Readmisión del Paciente , Análisis Costo-Beneficio , Costos de la Atención en Salud , Humanos
16.
Artículo en Inglés | MEDLINE | ID: mdl-32175868

RESUMEN

Computed tomography (CT) provides information for diagnosis, PET attenuation correction (AC), and radiation treatment planning (RTP). Disadvantages of CT include poor soft tissue contrast and exposure to ionizing radiation. While MRI can overcome these disadvantages, it lacks the photon absorption information needed for PET AC and RTP. Thus, an intelligent transformation from MR to CT, i.e., the MR-based synthetic CT generation, is of great interest as it would support PET/MR AC and MR-only RTP. Using an MR pulse sequence that combines ultra-short echo time (UTE) and modified Dixon (mDixon), we propose a novel method for synthetic CT generation jointly leveraging prior knowledge as well as partial supervision (SCT-PK-PS for short) on large-field-of-view images that span abdomen and pelvis. Two key machine learning techniques, i.e., the knowledge-leveraged transfer fuzzy c-means (KL-TFCM) and the Laplacian support vector machine (LapSVM), are used in SCT-PK-PS. The significance of our effort is threefold: 1) Using the prior knowledge-referenced KL-TFCM clustering, SCT-PK-PS is able to group the feature data of MR images into five initial clusters of fat, soft tissue, air, bone, and bone marrow. Via these initial partitions, clusters needing to be refined are observed and for each of them a few additionally labeled examples are given as the partial supervision for the subsequent semi-supervised classification using LapSVM; 2) Partial supervision is usually insufficient for conventional algorithms to learn the insightful classifier. Instead, exploiting not only the given supervision but also the manifold structure embedded primarily in numerous unlabeled data, LapSVM is capable of training multiple desired tissue-recognizers; 3) Benefiting from the joint use of KL-TFCM and LapSVM, and assisted by the edge detector filter based feature extraction, the proposed SCT-PK-PS method features good recognition accuracy of tissue types, which ultimately facilitates the good transformation from MR images to CT images of the abdomen-pelvis. Applying the method on twenty subjects' feature data of UTE-mDixon MR images, the average score of the mean absolute prediction deviation (MAPD) of all subjects is 140.72 ± 30.60 HU which is statistically significantly better than the 241.36 ± 21.79 HU obtained using the all-water method, the 262.77 ± 42.22 HU obtained using the four-cluster-partitioning (FCP, i.e., external-air, internal-air, fat, and soft tissue) method, and the 197.05 ± 76.53 HU obtained via the conventional SVM method. These results demonstrate the effectiveness of our method for the intelligent transformation from MR to CT on the body section of abdomen-pelvis.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Pelvis/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Abdomen/diagnóstico por imagen , Humanos
17.
IEEE Access ; 9: 17208-17221, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33747682

RESUMEN

Multi-modality imaging constitutes a foundation of precision medicine, especially in oncology where reliable and rapid imaging techniques are needed in order to insure adequate diagnosis and treatment. In cervical cancer, precision oncology requires the acquisition of 18F-labeled 2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET), magnetic resonance (MR), and computed tomography (CT) images. Thereafter, images are co-registered to derive electron density attributes required for FDG-PET attenuation correction and radiation therapy planning. Nevertheless, this traditional approach is subject to MR-CT registration defects, expands treatment expenses, and increases the patient's radiation exposure. To overcome these disadvantages, we propose a new framework for cross-modality image synthesis which we apply on MR-CT image translation for cervical cancer diagnosis and treatment. The framework is based on a conditional generative adversarial network (cGAN) and illustrates a novel tactic that addresses, simplistically but efficiently, the paradigm of vanishing gradient vs. feature extraction in deep learning. Its contributions are summarized as follows: 1) The approach -termed sU-cGAN-uses, for the first time, a shallow U-Net (sU-Net) with an encoder/decoder depth of 2 as generator; 2) sU-cGAN's input is the same MR sequence that is used for radiological diagnosis, i.e. T2-weighted, Turbo Spin Echo Single Shot (TSE-SSH) MR images; 3) Despite limited training data and a single input channel approach, sU-cGAN outperforms other state of the art deep learning methods and enables accurate synthetic CT (sCT) generation. In conclusion, the suggested framework should be studied further in the clinical settings. Moreover, the sU-Net model is worth exploring in other computer vision tasks.

18.
Comput Math Methods Med ; 2020: 2684851, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670390

RESUMEN

Multimodal registration is a challenging task due to the significant variations exhibited from images of different modalities. CT and MRI are two of the most commonly used medical images in clinical diagnosis, since MRI with multicontrast images, together with CT, can provide complementary auxiliary information. The deformable image registration between MRI and CT is essential to analyze the relationships among different modality images. Here, we proposed an indirect multimodal image registration method, i.e., sCT-guided multimodal image registration and problematic image completion method. In addition, we also designed a deep learning-based generative network, Conditional Auto-Encoder Generative Adversarial Network, called CAE-GAN, combining the idea of VAE and GAN under a conditional process to tackle the problem of synthetic CT (sCT) synthesis. Our main contributions in this work can be summarized into three aspects: (1) We designed a new generative network called CAE-GAN, which incorporates the advantages of two popular image synthesis methods, i.e., VAE and GAN, and produced high-quality synthetic images with limited training data. (2) We utilized the sCT generated from multicontrast MRI as an intermediary to transform multimodal MRI-CT registration into monomodal sCT-CT registration, which greatly reduces the registration difficulty. (3) Using normal CT as guidance and reference, we repaired the abnormal MRI while registering the MRI to the normal CT.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagen Multimodal/métodos , Algoritmos , Encéfalo/diagnóstico por imagen , Biología Computacional/métodos , Bases de Datos Factuales , Aprendizaje Profundo , Humanos , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Imagen por Resonancia Magnética/estadística & datos numéricos , Imagen Multimodal/estadística & datos numéricos , Biología Sintética , Tomografía Computarizada por Rayos X/estadística & datos numéricos
19.
Comput Math Methods Med ; 2020: 4519483, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32454883

RESUMEN

We propose a new method for fast organ classification and segmentation of abdominal magnetic resonance (MR) images. Magnetic resonance imaging (MRI) is a new type of high-tech imaging examination fashion in recent years. Recognition of specific target areas (organs) based on MR images is one of the key issues in computer-aided diagnosis of medical images. Artificial neural network technology has made significant progress in image processing based on the multimodal MR attributes of each pixel in MR images. However, with the generation of large-scale data, there are few studies on the rapid processing of large-scale MRI data. To address this deficiency, we present a fast radial basis function artificial neural network (Fast-RBF) algorithm. The importance of our efforts is as follows: (1) The proposed algorithm achieves fast processing of large-scale image data by introducing the ε-insensitive loss function, the structural risk term, and the core-set principle. We apply this algorithm to the identification of specific target areas in MR images. (2) For each abdominal MRI case, we use four MR sequences (fat, water, in-phase (IP), and opposed-phase (OP)) and the position coordinates (x, y) of each pixel as the input of the algorithm. We use three classifiers to identify the liver and kidneys in the MR images. Experiments show that the proposed method achieves a higher precision in the recognition of specific regions of medical images and has better adaptability in the case of large-scale datasets than the traditional RBF algorithm.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Abdomen/diagnóstico por imagen , Biología Computacional , Humanos , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Riñón/diagnóstico por imagen , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética/estadística & datos numéricos , Especificidad de Órganos , Máquina de Vectores de Soporte
20.
IEEE Trans Med Imaging ; 39(4): 819-832, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31425065

RESUMEN

We propose a new method for generating synthetic CT images from modified Dixon (mDixon) MR data. The synthetic CT is used for attenuation correction (AC) when reconstructing PET data on abdomen and pelvis. While MR does not intrinsically contain any information about photon attenuation, AC is needed in PET/MR systems in order to be quantitatively accurate and to meet qualification standards required for use in many multi-center trials. Existing MR-based synthetic CT generation methods either use advanced MR sequences that have long acquisition time and limited clinical availability or use matching of the MR images from a newly scanned subject to images in a library of MR-CT pairs which has difficulty in accounting for the diversity of human anatomy especially in patients that have pathologies. To address these deficiencies, we present a five-phase interlinked method that uses mDixon MR acquisition and advanced machine learning methods for synthetic CT generation. Both transfer fuzzy clustering and active learning-based classification (TFC-ALC) are used. The significance of our efforts is fourfold: 1) TFC-ALC is capable of better synthetic CT generation than methods currently in use on the challenging abdomen using only common Dixon-based scanning. 2) TFC partitions MR voxels initially into the four groups regarding fat, bone, air, and soft tissue via transfer learning; ALC can learn insightful classifiers, using as few but informative labeled examples as possible to precisely distinguish bone, air, and soft tissue. Combining them, the TFC-ALC method successfully overcomes the inherent imperfection and potential uncertainty regarding the co-registration between CT and MR images. 3) Compared with existing methods, TFC-ALC features not only preferable synthetic CT generation but also improved parameter robustness, which facilitates its clinical practicability. Applying the proposed approach on mDixon-MR data from ten subjects, the average score of the mean absolute prediction deviation (MAPD) was 89.78±8.76 which is significantly better than the 133.17±9.67 obtained using the all-water (AW) method (p=4.11E-9) and the 104.97±10.03 obtained using the four-cluster-partitioning (FCP, i.e., external-air, internal-air, fat, and soft tissue) method (p=0.002). 4) Experiments in the PET SUV errors of these approaches show that TFC-ALC achieves the highest SUV accuracy and can generally reduce the SUV errors to 5% or less. These experimental results distinctively demonstrate the effectiveness of our proposed TFCALC method for the synthetic CT generation on abdomen and pelvis using only the commonly-available Dixon pulse sequence.


Asunto(s)
Abdomen/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Pelvis/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Máquina de Vectores de Soporte , Análisis por Conglomerados , Lógica Difusa , Humanos , Imagen por Resonancia Magnética , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA