Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 867
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 631(8020): 319-327, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38898275

RESUMEN

Naturally occurring (native) sugars and carbohydrates contain numerous hydroxyl groups of similar reactivity1,2. Chemists, therefore, rely typically on laborious, multi-step protecting-group strategies3 to convert these renewable feedstocks into reagents (glycosyl donors) to make glycans. The direct transformation of native sugars to complex saccharides remains a notable challenge. Here we describe a photoinduced approach to achieve site- and stereoselective chemical glycosylation from widely available native sugar building blocks, which through homolytic (one-electron) chemistry bypasses unnecessary hydroxyl group masking and manipulation. This process is reminiscent of nature in its regiocontrolled generation of a transient glycosyl donor, followed by radical-based cross-coupling with electrophiles on activation with light. Through selective anomeric functionalization of mono- and oligosaccharides, this protecting-group-free 'cap and glycosylate' approach offers straightforward access to a wide array of metabolically robust glycosyl compounds. Owing to its biocompatibility, the method was extended to the direct post-translational glycosylation of proteins.


Asunto(s)
Técnicas de Química Sintética , Oligosacáridos , Azúcares , Radicales Libres/química , Radicales Libres/metabolismo , Glicosilación/efectos de la radiación , Indicadores y Reactivos/química , Luz , Oligosacáridos/síntesis química , Oligosacáridos/química , Oligosacáridos/metabolismo , Oligosacáridos/efectos de la radiación , Estereoisomerismo , Azúcares/síntesis química , Azúcares/química , Azúcares/metabolismo , Azúcares/efectos de la radiación
2.
Cell ; 155(3): 621-35, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24243019

RESUMEN

Direct lineage reprogramming is a promising approach for human disease modeling and regenerative medicine, with poorly understood mechanisms. Here, we reveal a hierarchical mechanism in the direct conversion of fibroblasts into induced neuronal (iN) cells mediated by the transcription factors Ascl1, Brn2, and Myt1l. Ascl1 acts as an "on-target" pioneer factor by immediately occupying most cognate genomic sites in fibroblasts. In contrast, Brn2 and Myt1l do not access fibroblast chromatin productively on their own; instead, Ascl1 recruits Brn2 to Ascl1 sites genome wide. A unique trivalent chromatin signature in the host cells predicts the permissiveness for Ascl1 pioneering activity among different cell types. Finally, we identified Zfp238 as a key Ascl1 target gene that can partially substitute for Ascl1 during iN cell reprogramming. Thus, a precise match between pioneer factors and the chromatin context at key target genes is determinative for transdifferentiation to neurons and likely other cell types.


Asunto(s)
Reprogramación Celular , Embrión de Mamíferos/citología , Fibroblastos/citología , Redes Reguladoras de Genes , Neuronas/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Cromatina/metabolismo , Fibroblastos/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Factores del Dominio POU/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(11): e2308401121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38446849

RESUMEN

Generation of defined neuronal subtypes from human pluripotent stem cells remains a challenge. The proneural factor NGN2 has been shown to overcome experimental variability observed by morphogen-guided differentiation and directly converts pluripotent stem cells into neurons, but their cellular heterogeneity has not been investigated yet. Here, we found that NGN2 reproducibly produces three different kinds of excitatory neurons characterized by partial coactivation of other neurotransmitter programs. We explored two principle approaches to achieve more precise specification: prepatterning the chromatin landscape that NGN2 is exposed to and combining NGN2 with region-specific transcription factors. Unexpectedly, the chromatin context of regionalized neural progenitors only mildly altered genomic NGN2 binding and its transcriptional response and did not affect neurotransmitter specification. In contrast, coexpression of region-specific homeobox factors such as EMX1 resulted in drastic redistribution of NGN2 including recruitment to homeobox targets and resulted in glutamatergic neurons with silenced nonglutamatergic programs. These results provide the molecular basis for a blueprint for improved strategies for generating a plethora of defined neuronal subpopulations from pluripotent stem cells for therapeutic or disease-modeling purposes.


Asunto(s)
Genes Homeobox , Neuronas , Humanos , Cromatina , Neurotransmisores , Prosencéfalo
4.
Circulation ; 149(8): 605-626, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38018454

RESUMEN

BACKGROUND: A better understanding of the molecular mechanism of aortic valve development and bicuspid aortic valve (BAV) formation would significantly improve and optimize the therapeutic strategy for BAV treatment. Over the past decade, the genes involved in aortic valve development and BAV formation have been increasingly recognized. On the other hand, ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) gene family members have been reported to be able to modulate cardiovascular development and diseases. The present study aimed to further investigate the roles of ADAMTS family members in aortic valve development and BAV formation. METHODS: Morpholino-based ADAMTS family gene-targeted screening for zebrafish heart outflow tract phenotypes combined with DNA sequencing in a 304 cohort BAV patient registry study was initially carried out to identify potentially related genes. Both ADAMTS gene-specific fluorescence in situ hybridization assay and genetic tracing experiments were performed to evaluate the expression pattern in the aortic valve. Accordingly, related genetic mouse models (both knockout and knockin) were generated using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) method to further study the roles of ADAMTS family genes. The lineage-tracing technique was used again to evaluate how the cellular activity of specific progenitor cells was regulated by ADAMTS genes. Bulk RNA sequencing was used to investigate the signaling pathways involved. Inducible pluripotent stem cells derived from both BAV patients and genetic mouse tissue were used to study the molecular mechanism of ADAMTS. Immunohistochemistry was performed to examine the phenotype of cardiac valve anomalies, especially in the extracellular matrix components. RESULTS: ADAMTS genes targeting and phenotype screening in zebrafish and targeted DNA sequencing on a cohort of patients with BAV identified ADAMTS16 (a disintegrin and metalloproteinase with thrombospondin motifs 16) as a BAV-causing gene and found the ADAMTS16 p. H357Q variant in an inherited BAV family. Both in situ hybridization and genetic tracing studies described a unique spatiotemporal pattern of ADAMTS16 expression during aortic valve development. Adamts16+/- and Adamts16+/H355Q mouse models both exhibited a right coronary cusp-noncoronary cusp fusion-type BAV phenotype, with progressive aortic valve thickening associated with raphe formation (fusion of the commissure). Further, ADAMTS16 deficiency in Tie2 lineage cells recapitulated the BAV phenotype. This was confirmed in lineage-tracing mouse models in which Adamts16 deficiency affected endothelial and second heart field cells, not the neural crest cells. Accordingly, the changes were mainly detected in the noncoronary and right coronary leaflets. Bulk RNA sequencing using inducible pluripotent stem cells-derived endothelial cells and genetic mouse embryonic heart tissue unveiled enhanced FAK (focal adhesion kinase) signaling, which was accompanied by elevated fibronectin levels. Both in vitro inducible pluripotent stem cells-derived endothelial cells culture and ex vivo embryonic outflow tract explant studies validated the altered FAK signaling. CONCLUSIONS: Our present study identified a novel BAV-causing ADAMTS16 p. H357Q variant. ADAMTS16 deficiency led to BAV formation.


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Cardiopatías Congénitas , Enfermedades de las Válvulas Cardíacas , Humanos , Animales , Ratones , Pez Cebra/genética , Enfermedades de las Válvulas Cardíacas/metabolismo , Células Endoteliales/metabolismo , Desintegrinas/genética , Desintegrinas/metabolismo , Hibridación Fluorescente in Situ , Válvula Aórtica/metabolismo , Cardiopatías Congénitas/complicaciones , Matriz Extracelular/metabolismo , Trombospondinas/metabolismo , Metaloproteasas/metabolismo , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo
5.
Mol Cell ; 68(1): 185-197.e6, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28943315

RESUMEN

Many infections and stress signals can rapidly activate the NLRP3 inflammasome to elicit robust inflammatory responses. This activation requires a priming step, which is thought to be mainly for upregulating NLRP3 transcription. However, recent studies report that the NLRP3 inflammasome can be activated independently of transcription, suggesting that the priming process has unknown essential regulatory steps. Here, we report that JNK1-mediated NLRP3 phosphorylation at S194 is a critical priming event and is essential for NLRP3 inflammasome activation. We show that NLRP3 inflammasome activation is disrupted in NLRP3-S194A knockin mice. JNK1-mediated NLRP3 S194 phosphorylation is critical for NLRP3 deubiquitination and facilitates its self-association and the subsequent inflammasome assembly. Importantly, we demonstrate that blocking S194 phosphorylation prevents NLRP3 inflammasome activation in cryopyrin-associated periodic syndromes (CAPS). Thus, our study reveals a key priming molecular event that is a prerequisite for NLRP3 inflammasome activation. Inhibiting NLRP3 phosphorylation could be an effective treatment for NLRP3-related diseases.


Asunto(s)
Inflamasomas/genética , Macrófagos/inmunología , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Choque Séptico/genética , Secuencia de Aminoácidos , Animales , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/inmunología , Escherichia coli/química , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Inflamasomas/inmunología , Lipopolisacáridos/farmacología , Macrófagos/patología , Masculino , Ratones , Ratones Transgénicos , Proteína Quinasa 8 Activada por Mitógenos/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Fosforilación , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Choque Séptico/inducido químicamente , Choque Séptico/mortalidad , Choque Séptico/patología , Transducción de Señal , Análisis de Supervivencia
6.
PLoS Genet ; 18(6): e1010275, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35696436

RESUMEN

Timely completion of eukaryotic genome duplication requires coordinated DNA replication initiation at multiple origins. Replication begins with the loading of the Mini-Chromosome Maintenance (MCM) complex, proceeds by the activation of the Cdc45-MCM-GINS (CMG) helicase, and ends with CMG removal after chromosomes are fully replicated. Post-translational modifications on the MCM and associated factors ensure an orderly transit of these steps. Although the mechanisms of CMG activation and removal are partially understood, regulated MCM loading is not, leaving an incomplete understanding of how DNA replication begins. Here we describe a site-specific modification of Mcm3 by the Small Ubiquitin-like MOdifier (SUMO). Mutations that prevent this modification reduce the MCM loaded at replication origins and lower CMG levels, resulting in impaired cell growth, delayed chromosomal replication, and the accumulation of gross chromosomal rearrangements (GCRs). These findings demonstrate the existence of a SUMO-dependent regulation of origin-bound MCM and show that this pathway is needed to prevent genome rearrangements.


Asunto(s)
Replicación del ADN , Sumoilación , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/genética , Replicación del ADN/genética , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Origen de Réplica/genética , Sumoilación/genética
7.
Am J Physiol Cell Physiol ; 327(3): C737-C749, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39069827

RESUMEN

The mitochondrial citrate shuttle, which relies on the solute carrier family 25 member 1 (SLC25A1), plays a pivotal role in transporting citrate from the mitochondria to the cytoplasm. This shuttle supports glycolysis, lipid biosynthesis, and protein acetylation. Previous research has primarily focused on SLC25A1 in pathological models, particularly high-fat diet (HFD)-induced obesity. However, the impact of SLC25A1 inhibition on nutrient metabolism under HFD remains unclear. To address this gap, we used zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) to evaluate the effects of inhibiting Slc25a1. In zebrafish, we administered Slc25a1-specific inhibitors (CTPI-2) for 4 wk, whereas Nile tilapia received intraperitoneal injections of dsRNA to knock down slc25a1b for 7 days. Inhibition of the mitochondrial citrate shuttle effectively protected zebrafish from HFD-induced obesity, hepatic steatosis, and insulin resistance. Of note, glucose tolerance was unaffected. Inhibition of Slc25a1 altered hepatic protein acetylation patterns, with decreased cytoplasmic acetylation and increased mitochondrial acetylation. Under HFD conditions, Slc25a1 inhibition promoted fatty acid oxidation and reduced hepatic triglyceride (TAG) accumulation by deacetylating carnitine palmitoyltransferase 1a (Cpt1a). In addition, Slc25a1 inhibition triggered acetylation-induced inactivation of Pdhe1α, leading to a reduction in glucose oxidative catabolism. This was accompanied by enhanced glucose uptake and storage in zebrafish livers. Furthermore, Slc25a1 inhibition under HFD conditions activated the SIRT1/PGC1α pathway, promoting mitochondrial proliferation and enhancing oxidative phosphorylation for energy production. Our findings provide new insights into the role of nonhistone protein acetylation via the mitochondrial citrate shuttle in the development of hepatic lipid deposition and hyperglycemia caused by HFD.NEW & NOTEWORTHY The mitochondrial citrate shuttle is a crucial physiological process for maintaining metabolic homeostasis. In the present study, we found that inhibition of mitochondrial citrate shuttle (Slc25a1) could alleviate metabolic syndromes induced by high-fat diet (HFD) through remodeling hepatic protein acetylation modification. Briefly, Slc25a1 inhibition reduces hepatic triglyceride deposition by deacetylating Cpt1a and reduces glucose oxidative catabolism by acetylating Pdhe1α. Our study provides new insights into the treatment of diet-induced metabolic syndromes.


Asunto(s)
Ácido Cítrico , Dieta Alta en Grasa , Pez Cebra , Animales , Dieta Alta en Grasa/efectos adversos , Ácido Cítrico/metabolismo , Síndrome Metabólico/metabolismo , Síndrome Metabólico/prevención & control , Síndrome Metabólico/genética , Síndrome Metabólico/etiología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Obesidad/metabolismo , Obesidad/prevención & control , Obesidad/genética , Obesidad/etiología , Acetilación , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Resistencia a la Insulina , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Hígado Graso/patología , Hígado Graso/etiología , Metabolismo de los Lípidos/efectos de los fármacos
8.
J Biol Chem ; 299(5): 104696, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37044218

RESUMEN

KDEL receptor (KDELR) is a key protein that recycles escaped endoplasmic reticulum (ER) resident proteins from the Golgi apparatus back to the ER and maintains a dynamic balance between these two organelles in the early secretory pathway. Studies have shown that this retrograde transport pathway is partly regulated by two KDELR-interacting proteins, acyl-CoA-binding domain-containing 3 (ACBD3), and cyclic AMP-dependent protein kinase A (PKA). However, whether Golgi-localized ACBD3, which was first discovered as a PKA-anchoring protein in mitochondria, directly interacts with PKA at the Golgi and coordinates its signaling in Golgi-to-ER traffic has remained unclear. In this study, we showed that the GOLD domain of ACBD3 directly interacts with the regulatory subunit II (RII) of PKA and effectively recruits PKA holoenzyme to the Golgi. Forward trafficking of proteins from the ER triggers activation of PKA by releasing the catalytic subunit from RII. Furthermore, we determined that depletion of ACBD3 reduces the Golgi fraction of RII, resulting in moderate, but constitutive activation of PKA and KDELR retrograde transport, independent of cargo influx from the ER. Taken together, these data demonstrate that ACBD3 coordinates the protein secretory pathway at the Golgi by facilitating KDELR/PKA-containing protein complex formation.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Aparato de Golgi , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas , Transducción de Señal , Humanos
9.
J Neuroinflammation ; 21(1): 35, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287411

RESUMEN

BACKGROUND: Microglia is the major contributor of post-stroke neuroinflammation cascade and the crucial cellular target for the treatment of ischemic stroke. Currently, the endogenous mechanism underlying microglial activation following ischemic stroke remains elusive. Serglycin (SRGN) is a proteoglycan expressed in immune cells. Up to now, the role of SRGN on microglial activation and ischemic stroke is largely unexplored. METHODS: Srgn knockout (KO), Cd44-KO and wild-type (WT) mice were subjected to middle cerebral artery occlusion (MCAO) to mimic ischemic stroke. Exogenous SRGN supplementation was achieved by stereotactic injection of recombinant mouse SRGN (rSRGN). Cerebral infarction was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Neurological functions were evaluated by the modified neurological severity score (mNSS) and grip strength. Microglial activation was detected by Iba1 immunostaining, morphological analysis and cytokines' production. Neuronal death was examined by MAP2 immunostaining and FJB staining. RESULTS: The expression of SRGN and its receptor CD44 was significantly elevated in the ischemic mouse brains, especially in microglia. In addition, lipopolysaccharide (LPS) induced SRGN upregulation in microglia in vitro. rSRGN worsened ischemic brain injury in mice and amplified post-stroke neuroinflammation, while gene knockout of Srgn exerted reverse impacts. rSRGN promoted microglial proinflammatory activation both in vivo and in vitro, whereas Srgn-deficiency alleviated microglia-mediated inflammatory response. Moreover, the genetic deletion of Cd44 partially rescued rSRGN-induced excessed neuroinflammation and ischemic brain injury in mice. Mechanistically, SRGN boosted the activation of NF-κB signal, and increased glycolysis in microglia. CONCLUSION: SRGN acts as a novel therapeutic target in microglia-boosted proinflammatory response following ischemic stroke.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Proteínas de Transporte Vesicular , Animales , Ratones , Microglía/metabolismo , Isquemia Encefálica/metabolismo , Enfermedades Neuroinflamatorias , Accidente Cerebrovascular/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/metabolismo , Proteoglicanos/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Lesiones Encefálicas/metabolismo
10.
Plant Cell Environ ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254178

RESUMEN

Although WRKY transcription factors play crucial roles in plant responses to high-temperature stress, little is known about Group IIb WRKY family members. Here, we identified the WRKY-IIb protein PlWRKY47 from herbaceous peony (Paeonia lactiflora Pall.), which functioned as a nuclear-localized transcriptional activator. The expression level of PlWRKY47 was positively correlated with high-temperature tolerance. Silencing of PlWRKY47 in P. lactiflora resulted in the decreased tolerance to high-temperature stress by accumulating reactive oxygen species (ROS). Overexpression of PlWRKY47 improved plant high-temperature tolerance through decreasing ROS accumulation. Moreover, PlWRKY47 directly bound to the promoter of cytosolic glyceraldehyde-3-phosphate dehydrogenase 2 (PlGAPC2) gene and activated its transcription. PlGAPC2 was also positively regulated high-temperature tolerance in P. lactiflora by increasing NAD+ content to inhibit ROS generation. Additionally, PlWRKY47 physically interacted with itself to form a homodimer, and PlWRKY47 could also interact with one Group IIb WRKY family member PlWRKY72 to form a heterodimer, they all promoted PlWRKY47 to bind to and activate PlGAPC2. These data support that the PlWRKY47-PlWRKY47 homodimer and PlWRKY72-PlWRKY47 heterodimer can directly activate PlGAPC2 expression to improve high-temperature tolerance by inhibiting ROS generation in P. lactiflora. These results will provide important insights into the plant high-temperature stress response by WRKY-IIb transcription factors.

11.
Cell Commun Signal ; 22(1): 140, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378560

RESUMEN

Hostile microenvironment of cancer cells provoke a stressful condition for endoplasmic reticulum (ER) and stimulate the expression and secretion of ER chaperones, leading to tumorigenic effects. However, the molecular mechanism underlying these effects is largely unknown. In this study, we reveal that the last four residues of ER chaperones, which are recognized by KDEL receptor (KDELR), is required for cell proliferation and migration induced by secreted chaperones. By combining proximity-based mass spectrometry analysis, split venus imaging and membrane yeast two hybrid assay, we present that EGF receptor (EGFR) may be a co-receptor for KDELR on the surface. Prior to ligand addition, KDELR spontaneously oligomerizes and constantly undergoes recycling near the plasma membrane. Upon KDEL ligand binding, the interactions of KDELR with itself and with EGFR increase rapidly, leading to augmented internalization of KDELR and tyrosine phosphorylation in the C-terminus of EGFR. STAT3, which binds the phosphorylated tyrosine motif on EGFR, is subsequently activated by EGFR and mediates cell growth and migration. Taken together, our results suggest that KDELR serves as a bona fide cell surface receptor for secreted ER chaperones and transactivates EGFR-STAT3 signaling pathway.


Asunto(s)
Receptores ErbB , Receptores de Péptidos , Transducción de Señal , Humanos , Ligandos , Receptores ErbB/metabolismo , Chaperonas Moleculares/metabolismo , Proliferación Celular , Tirosina , Factor de Transcripción STAT3/metabolismo
12.
Environ Sci Technol ; 58(23): 10275-10286, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38825773

RESUMEN

The pronounced lethality of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-quinone or 6PPDQ) toward specific salmonids, while sparing other fish species, has received considerable attention. However, the underlying cause of this species-specific toxicity remains unresolved. This study explored 6PPDQ toxicokinetics and intestinal microbiota composition in adult zebrafish during a 14-day exposure to environmentally realistic concentrations, followed by a 7-day recovery phase. Predominant accumulation occurred in the brain, intestine, and eyes, with the lowest levels in the liver. Six metabolites were found to undergo hydroxylation, with two additionally undergoing O-sulfonation. Semiquantitative analyses revealed that the predominant metabolite featured a hydroxy group situated on the phenyl ring adjacent to the quinone. This was further validated by assessing enzyme activity and determining in silico binding interactions. Notably, the binding affinity between 6PPDQ and zebrafish phase I and II enzymes exceeded that with the corresponding coho salmon enzymes by 1.04-1.53 times, suggesting a higher potential for 6PPDQ detoxification in tolerant species. Whole-genome sequencing revealed significant increases in the genera Nocardioides and Rhodococcus after exposure to 6PPDQ. Functional annotation and pathway enrichment analyses predicted that these two genera would be responsible for the biodegradation and metabolism of xenobiotics. These findings offer crucial data for comprehending 6PPDQ-induced species-specific toxicity.


Asunto(s)
Biotransformación , Microbioma Gastrointestinal , Pez Cebra , Animales , Pez Cebra/metabolismo
13.
J Periodontal Res ; 59(1): 162-173, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37905727

RESUMEN

OBJECTIVE: The purpose of this study was to investigate resveratrol's specific role as an anti-inflammatory and osteogenic differentiation of hPDLSCs in periodontitis and to reveal the mechanisms involved. BACKGROUND: Numerous studies have shown that inhibiting the inflammatory response of periodontal tissues and promoting the regeneration of alveolar bone are crucial treatments for periodontitis. Resveratrol has been found to have certain anti-inflammatory property. However, the anti-inflammatory mechanism and osteogenic effect of resveratrol in periodontitis are poorly understood. MATERIALS AND METHODS: We constructed an in vitro periodontitis model by LPS stimulation of hPDLSCs and performed WB, RT-qPCR, and immunofluorescence to analyze inflammatory factors and related pathways. In addition, we explored the osteogenic ability of resveratrol in in vitro models. RESULTS: In vitro, resveratrol ameliorated the inflammatory response associated with activation of the NF-κB pathway through activation of the NRF2/HO-1 pathway, characterized by inhibition of p65/p50 nuclear translocation and the proinflammatory cytokines interleukin-1ß levels. Resveratrol also has a positive effect on osteogenic differentiation. CONCLUSIONS: Observations suggest that resveratrol modulates the inflammatory response in hPDLSCs via the NRF2/HO-1 and NF-κB pathways and promotes osteogenic differentiation.


Asunto(s)
FN-kappa B , Periodontitis , Humanos , FN-kappa B/metabolismo , Resveratrol/farmacología , Factor 2 Relacionado con NF-E2 , Osteogénesis , Ligamento Periodontal , Antiinflamatorios/farmacología , Diferenciación Celular , Células Cultivadas
14.
Eur Spine J ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39095489

RESUMEN

OBJECTIVE: This study aimed to distinguish tuberculous spondylodiscitis (TS) from pyogenic spondylodiscitis (PS) based on laboratory, magnetic resonance imaging (MRI) and computed tomography (CT) findings. Further, a novel diagnostic model for differential diagnosis was developed. METHODS: We obtained MRI, CT and laboratory data from TS and PS patients. Predictive models were built using binary logistic regression analysis. The receiver operating characteristic curve was analyzed. Both internal and external validation was performed. RESULTS: A total of 81 patients with PS (n = 46) or TS (n = 35) were enrolled. All patients had etiological evidence from the focal lesion. Disc signal or height preservation, skip lesion or multi segment (involved segments ≥ 3) involvement, paravertebral calcification, massive sequestra formation, subligamentous bone destruction, bone erosion with osteosclerotic margin, higher White Blood Cell Count (WBC) and positive result of tuberculosis infection T cell spot test (T-SPOT.TB) were more prevalent in the TS group. A diagnostic model was developed and included four predictors: WBC<7.265 * (10^9/L), skip lesion or involved segments ≥ 3, massive sequestra formation and subligamentous bone destruction. The model showed good sensitivity, specificity, and total accuracy (91.4%, 95.7%, and 93.8%, respectively); the area under the receiver operating characteristic curve (AUC) was 0.981, similar to the results of internal validation using bootstrap resampling (1000 replicates) and external validation set, indicating good clinical predictive ability. CONCLUSIONS: This study develop a good diagnostic model based on both CT and MRI, as well as laboratory findings, which may help clinicians distinguish between TS and PS.

15.
Genomics ; 115(2): 110574, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36758878

RESUMEN

Chondrocyte senescence is a decisive component of age-related osteoarthritis, however, the function of small noncoding RNAs (sncRNAs) in chondrocyte senescence remains underexplored. Human hip joint cartilage chondrocytes were cultivated up to passage 4 to induce senescence. RNA samples were extracted and then analyzed using small RNA sequencing and qPCR. ß-galactosidase staining was used to detect the effect of sncRNA on chondrocyte aging. Results of small RNA sequencing showed that 279 miRNAs, 136 snoRNAs, 30 snRNAs, 102 piRNAs, and 5 rasiRNAs were differentially expressed in senescent chondrocytes. The differential expression of 150 sncRNAs was further validated by qPCR. Transfection of sncRNAs and ß-galactosidase staining were also performed to further revealed that hsa-miR-135b-5p, SNORA80B-201, and RNU5E-1-201 have the function to restrain chondrocyte senescence, while has-piR-019102 has the function to promote chondrocyte senescence. Our data suggest that sncRNAs have therapeutic potential as novel epigenetic targets in age-related osteoarthritis.


Asunto(s)
MicroARNs , Osteoartritis , ARN Pequeño no Traducido , Humanos , Condrocitos/metabolismo , Osteoartritis/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Pequeño no Traducido/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo , Epigénesis Genética , Senescencia Celular
16.
Sensors (Basel) ; 24(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38894333

RESUMEN

In recent years, hypertension has become one of the leading causes of illness and death worldwide. Changes in lifestyle among the population have led to an increasing prevalence of hypertension. This study proposes a non-contact blood pressure estimation method that allows patients to conveniently monitor their blood pressure values. By utilizing a webcam to track facial features and the region of interest (ROI) for obtaining forehead images, independent component analysis (ICA) is employed to eliminate artifact signals. Subsequently, physiological parameters are calculated using the principle of optical wave reflection. The Nelder-Mead (NM) simplex method is combined with the particle swarm optimization (PSO) algorithm to optimize the empirical parameters, thus enhancing computational efficiency and accurately determining the optimal solution for blood pressure estimation. The influences of light intensity and camera distance on the experimental results are also discussed. Furthermore, the measurement time is only 10 s. The superior accuracy and efficiency of the proposed methodology are demonstrated by comparing them with those in other published literature.


Asunto(s)
Algoritmos , Determinación de la Presión Sanguínea , Presión Sanguínea , Humanos , Presión Sanguínea/fisiología , Determinación de la Presión Sanguínea/métodos , Hipertensión/fisiopatología , Hipertensión/diagnóstico , Procesamiento de Señales Asistido por Computador
17.
Nano Lett ; 23(22): 10625-10632, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37930759

RESUMEN

5-Hydroxymethyluracil (5hmU) is an oxidation derivative of thymine in the genomes of various organisms and may serve as both an epigenetic mark and a cancer biomarker. However, the current 5hmU assays usually have drawbacks of laborious procedures, low specificity, and unsatisfactory sensitivity. Herein, we demonstrate the click chemistry-mediated hyperbranched amplification-driven dendritic nanoassembly for genome-wide analysis of 5hmU in breast cell lines and human breast tissues. The proposed strategy possesses good selectivity, ultralow background, and high sensitivity with a detection limit of 83.28 aM. This method can accurately detect even a 0.001% 5hmU level in the mixture. Moreover, it can determine 5hmU at single-cell level and distinguish the expressions of 5hmU in tissues of normal persons and breast cancer patients, holding great promise in 5hmU-related biological research and clinical diagnosis.


Asunto(s)
ADN , Pentoxil (Uracilo) , Humanos , ADN/metabolismo , Pentoxil (Uracilo)/metabolismo , Línea Celular
18.
J Environ Manage ; 356: 120648, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508012

RESUMEN

Profound worldwide fleet electrification is thought to be the primary route for achieving the target of carbon neutrality. However, when and how electrification can help mitigate environmental impacts and carbon emissions in the transport sector remains unclear. Herein, the overall life-cycle environmental impacts and carbon saving range of two typical A-class vehicles in China, including electric vehicle (EV) and internal combustion engine vehicle (ICEV), were quantified by the life cycle assessment model for endpoint damage with localization parameters. The results showed that the EV outperformed the ICEV for the total environment impact after a travel distance of 39,153 km and for carbon emissions after 32,292 km. The ICEV was more carbon-friendly only when the driving distance was less than 3229 km/a. Considering a full lifespan travel distance of 150,000 km, the whole life-cycle average environmental impacts of EV and ICEV were calculated as 8.6 and 17.5 mPt/km, respectively, but the EV had 2.3 times higher impacts than the ICEV in the production phase. In addition, the EV unit carbon emission was 140 g/km, 46.8% lower than that of the ICEV. Finally, three potential reduction scenarios were considered: cleaner power mix, energy efficiency improvement and composite scenario. These scenarios contributed 19.1%, 13.0% and 32.1% reductions, respectively. However, achieving carbon peak and neutrality goals in China remains a great challenge unless fossil fuels are replaced by renewable energy. The research can provide scientific reference for the method and practice of emission reduction link identification, eco-driving choice and emission reduction path formulation.


Asunto(s)
Carbono , Objetivos , China , Transportes , Emisiones de Vehículos/análisis , Vehículos a Motor
19.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3288-3294, 2024 Jun.
Artículo en Zh | MEDLINE | ID: mdl-39041091

RESUMEN

This study aimed to explore the regulating effect of Gegen Decoction(GGD) on the hypothalamic-pituitary-ovarian axis(HPOA) dysfunction in the mouse model of primary dysmenorrhea(PD). The mouse model of PD with periodic characteristics was established by administration of estradiol benzoate and oxytocin. Mice were randomized into control, model, GGD, and ibuprofen groups. The writhing response, hypothalamus index, pituitary index, ovary index, and uterus index were observed and determined. The serum levels of prostaglandin F_(2α)(PGF_(2α)), gonadotropin-releasing hormone(GnRH), follicle-stimulating hormone(FSH), luteinizing hormone(LH), and estrogen(E_2) levels were measured by ELISA kits. Western blot and qPCR were employed to determine the protein and mRNA levels, respectively, of gonadotropin-releasing hormone receptor(GnRH-R) in the pituitary tissue, follicle-stimulating hormone receptor(FSHR) and luteinizing hormone receptor(LHR) in the ovarian tissue, and estrogen receptor(ER) in the uterine tissue. The results showed that the writhing response, serum levels of PGF_(2α), GnRH, FSH, LH, and E_2, ovarian and uterine indexes, the protein and mRNA levels of GnRH-R in the pituitary tissue, FSHR and LHR in the ovarian tissue, and ER in the uterine tissue were significantly increased in the model group compared with those in the control group. GGD inhibited the writhing response, reduced the serum levels of PGF_(2α), GnRH, FSH, LH, and E_2, decreased the ovarian and uterine indexes, and down-regulated the protein and mRNA levels of GnRH-R in the pituitary tissue, FSHR and LHR in the ovarian tissue, and ER in the uterine tissue. The data suggested that GGD can regulate the HPOA and inhibit E_2 generation in the mice experiencing recurrent PD by down-regulating the expression of proteins and genes related to HPOA axis, thus exerting the therapeutic effect on PD.


Asunto(s)
Medicamentos Herbarios Chinos , Dismenorrea , Ovario , Animales , Femenino , Ratones , Ovario/efectos de los fármacos , Ovario/metabolismo , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Dismenorrea/tratamiento farmacológico , Dismenorrea/metabolismo , Dismenorrea/genética , Dismenorrea/fisiopatología , Hormona Luteinizante/sangre , Hormona Folículo Estimulante/sangre , Hipófisis/metabolismo , Hipófisis/efectos de los fármacos , Humanos , Receptores de HFE/genética , Receptores de HFE/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/genética , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Receptores LHRH/genética , Receptores LHRH/metabolismo , Receptores de HL/genética , Receptores de HL/metabolismo
20.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1621-1631, 2024 Mar.
Artículo en Zh | MEDLINE | ID: mdl-38621947

RESUMEN

Network pharmacology was employed to probe into the mechanism of Fushen Granules in treating peritoneal dialysis-rela-ted peritonitis(PDRP) in rats. The main active components of Fushen Granules were searched against the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, and their targets were predicted. PDRP-related targets were retrieved from DisGeNET and other databases. The common targets shared by the drug and the disease were identified by the online tool, and protein-protein interaction(PPI) network of the common targets. The obtained 276 common targets were imported into DAVID for GO function enrichment and KEGG pathway enrichment. The main signaling pathway of Fushen Granules in the treatment of PDRP was predicted as Toll-like receptor 4(TLR4)/nuclear factor(NF)-κB. The rat model of uremia was induced by 5/6 nephrectomy. From two weeks after operation, the rat model of peritoneal dialysis(PD) was established by intraperitoneal injection of 20 mL dialysate with 1.25% glucose every day. The sham operation group and model group received 2 mL normal saline by gavage every day. The rats in Fushen Gra-nules groups were administrated with 2 mL solutions of low-(0.54 g·kg~(-1)), medium-(1.08 g·kg~(-1)) and high-dose(2.16 g·kg~(-1)) Fushen Granules every day. The bifico group received 2 mL(113.4 mg·kg~(-1)) of bifico solution every day. At the end of the 8th week, the levels of serum creatinine(Scr) and blood urea nitrogen(BUN) in each group were measured. The serum levels of hypersensitive C reactive protein(hs-CRP), tumor necrosis factor(TNF)-α, and interleukin(IL)-6 were measured, and the pathological changes in the colon tissue were observed by hematoxylin-eosin(HE) staining. The serum levels of lipopolysaccharide(LPS) and lipopolysaccharide-binding protein(LBP) of rats were measured, and the expression levels of LBP, TLR4, NF-κB p65, inhibitor of κB kinase α(IκBα), TNF-α, and IL-1ß in the colon tissue were determined. Compared with sham operation group, the model group had abnormal structure of all layers of colon tissue, sparse and shorter intestinal villi, visible edema in mucosal layer, wider gap, obvious local inflammatory cell infiltration, significantly decreased body weight(P<0.01), and significantly increased kidney function index(Scr, BUN) content(P<0.01). Serum levels of inflammatory cytokines(hs-CRP, TNF-α, IL-6), LPS and LBP were significantly increased(P<0.01), protein expressions of LBP, TLR4, NF-κB p65, TNF-α and IL-1ß were significantly increased(P<0.01), and protein expressions of IκBα were significantly decreased(P<0.01). Compared with model group, intestinal villi damage in colonic tissue of rats in low-, medium-and high-dose Fushen Granules groups and bifico group were alleviated to different degrees, edema in submucosa was alleviated, space was narrowed, and inflammatory cell infiltration in lamina propria was reduced. The contents of renal function index(Scr, BUN) and serum inflammatory factors(hs-CRP, TNF-α, IL-6) were significantly decreased(P<0.05 or P<0.01) in medium-and high-dose Fushen Granules groups and bifico group(P<0.05 or P<0.01). Serum LPS and LBP contents in Fushen Granules group and bifico group were significantly decreased(P<0.01), protein expressions of LBP, TLR4, NF-κB p65, TNF-α and IL-1ß in Fushen Granules group were significantly decreased(P<0.05 or P<0.01), and protein expressions of IκBα were significantly increased(P<0.01). The expression of LBP protein in bifico group was significantly decreased(P<0.01). The results suggest that Fushen Granules can protect the residual renal function of PD rats, reduce the inflammatory response, and protect the colon tissue. Based on network pharmacology, TLR4/NF-κB pathway may be the main signaling pathway of Fushen granule in the treatment of PDRP. The results showed that Fushen Granules could improve intestinal inflammation and protect intestinal barrier to prevent PDRP by regulating the expression of key factors in TLR4/NF-κB pathway in colon of PD rats.


Asunto(s)
Experimentación Animal , Diálisis Peritoneal , Peritonitis , Ratas , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa , Farmacología en Red , Factor de Necrosis Tumoral alfa/metabolismo , Proteína C-Reactiva , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Interleucina-6 , Lipopolisacáridos , Peritonitis/tratamiento farmacológico , Diálisis Peritoneal/efectos adversos , Edema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA