Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Purinergic Signal ; 19(4): 685-697, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36854856

RESUMEN

It has been demonstrated that the ATP-gated ion channel P2X7 receptor is involved in tumor progression and plays an important role in regulating tumor cell growth, invasion, migration and angiogenesis. However, P2X7 receptors have been relatively poorly studied in non-small cell lung cancer (NSCLC) cells. Therefore, the aim of this study was to investigate the effects of P2X7 receptor on A549 cells (NSCLC cell line) migration and invasion and to reveal the molecular mechanisms mediated by it. We detected the expression and function of P2X7 receptor in A549 cells. The effects and mechanisms of P2X7 receptor on A549 cells migration, invasion, and epithelial-mesenchymal transition were detected in vitro and in vivo. The results showed P2X7 receptor expressed by A549 cells had ion channel and macropore formation function. In addition, activation of P2X7 receptor by adenosine triphosphate (ATP) or 2'(3')-O-(4-Benzoylbenzoyl)-adenosine-5'-triphosphate (BzATP) promoted Epithelial-mesenchymal transition (EMT), migration and invasion of A549 cells, which was attenuated by treatment of cells with P2X7 receptor antagonist A438079 and Oxidized ATP. Furthermore, activation of P2X7 receptor increased phosphorylated protein kinase B (p-Akt) levels, and the phosphatidylinositol-tris-phosphate kinase 3 (PI3K)/protein kinase B (Akt) inhibitor LY294002 blocked migration and invasion of A549 cells induced by ATP or BzATP. At the same time, in vivo results showed that P2X7 receptor could also promote EMT and PI3K/Akt expression in transplanted tumors. Our study indicated that P2X7 receptor promotes A549 cells migration and invasion through the PI3K/Akt signaling pathway, suggesting that P2X7 receptor may be a potential therapeutic target for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Células A549 , Adenosina Trifosfato/farmacología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Pulmonares/metabolismo , Fosfatos/metabolismo , Fosfatos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Receptores Purinérgicos P2X7
2.
Mol Biol Rep ; 50(2): 1687-1699, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36417079

RESUMEN

Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a nonselective cation channel of the purinergic receptor family. P2X7R is activated by adenosine triphosphate (ATP) and plays a significant role in inflammatory and autoimmune diseases by triggering cellular signal transduction. More importantly, P2X7R is abnormally expressed in many tumor cells and is involved in the progression of various tumor cells. Studies have shown that the irregular expression of P2X7R in colorectal cancer (CRC) can not only indirectly affect the occurrence and development of CRC by promoting inflammatory bowel disease but also directly affect the proliferation and metastasis of CRC cells. P2X7R plays a bidirectional role in cancer induction and inhibition by mediating complex signaling pathways in CRC, and its expression level is closely related to the overall survival of CRC patients. Therefore, P2X7R may be a biomarker and potential therapeutic target for the development and prognosis of CRC. In this paper, we review the research progress on P2X7R in CRC.


Asunto(s)
Neoplasias Colorrectales , Receptores Purinérgicos P2X7 , Humanos , Adenosina Trifosfato , Biomarcadores , Carcinogénesis , Neoplasias Colorrectales/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Transducción de Señal
3.
J Fungi (Basel) ; 10(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38921396

RESUMEN

Strawberry root rot caused by Fusarium solani is one of the main diseases of strawberries and significantly impacts the yield and quality of strawberry fruit. Biological control is becoming an alternative method for the control of plant diseases to replace or decrease the application of traditional chemical fungicides. To obtain antagonistic bacteria with a high biocontrol effect on strawberry root rot, over 72 rhizosphere bacteria were isolated from the strawberry rhizosphere soil and screened for their antifungal activity against F. solani by dual culture assay. Among them, strains CMS5 and CMR12 showed the strongest inhibitory activity against F. solani (inhibition rate 57.78% and 65.93%, respectively) and exhibited broad-spectrum antifungal activity. According to the phylogenetic tree based on 16S rDNA and gyrB genes, CMS5 and CMR12 were identified as Bacillus amyloliquefaciens. Lipopeptide genes involved in surfactin, iturin, and fengycin biosynthesis were detected in the DNA genomes of CMS5 and CMR12 by PCR amplification. The genes related to the three major lipopeptide metabolites existed in the DNA genome of strains CMS5 and CMR12, and the lipopeptides could inhibit the mycelial growth of F. solani and resulted in distorted hyphae. The inhibitory rates of lipopeptides of CMS5 and CMR12 on the spore germination of F. solani were 61.00% and 42.67%, respectively. The plant-growth-promoting (PGP) traits in vitro screening showed that CMS5 and CMR12 have the ability to fix nitrogen and secreted indoleacetic acid (IAA). In the potting test, the control efficiency of CMS5, CMR12 and CMS5+CMR12 against strawberry root rot were 65.3%, 67.94% and 88.00%, respectively. Furthermore, CMS5 and CMR12 enhanced the resistance of strawberry to F. solani by increasing the activities of defense enzymes MDA, CAT and SOD. Moreover, CMS5 and CMR12 significantly promoted the growth of strawberry seedlings such as root length, seedling length and seedling fresh weight. This study revealed that B. amyloliquefaciens CMS5 and CMR12 have high potential to be used as biocontrol agents to control strawberry root rot.

4.
Reprod Sci ; 30(3): 823-834, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35799022

RESUMEN

Cervical cancer is one of the most common and serious tumors in women. Finding new biomarkers and therapeutic targets plays an important role in the diagnosis, prognosis, and treatment of cervical cancer. Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a purine ligand cation channel, activated by adenosine triphosphate (ATP). Studies have shown that P2X7R plays an important role in a variety of diseases and cancers. More and more studies have shown that P2X7R is also closely related to cervical cancer; therefore, the role of P2X7R in the development of cervical cancer deserves further discussion. The expression level of P2X7R in uterine epithelial cancer tissues was lower than that of the corresponding normal tissues. P2X7R plays an important role in the apoptotic process of cervical cancer through various mechanisms of action, and both antagonists and agonists of P2X7R can inhibit the proliferation of cervical cancer cells, while P2X7R is involved in the antitumor effect of Atr-I on cervical cancer cells. This review evaluates the current role of P2X7R in cervical cancer in order to develop more specific therapies for cervical cancer. In conclusion, P2X7R may become a biomarker for cervical cancer screening, and even a new target for clinical treatment of cervical cancer.


Asunto(s)
Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/tratamiento farmacológico , Detección Precoz del Cáncer , Cuello del Útero/metabolismo , Biomarcadores , Apoptosis , Receptores Purinérgicos P2X7 , Adenosina Trifosfato/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2X/uso terapéutico
5.
Chem Biol Drug Des ; 101(3): 794-808, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36403102

RESUMEN

Purinergic ligand-gated ion channel 7 receptor (P2X7 receptor) is an adenosine triphosphate (ATP)-gated ion channel that is widely distributed on the surfaces of immune cells and tissues such as those in the liver, kidney, lung, intestine, and nervous system. Hepatocellular carcinoma (HCC) is one of the most common malignancies with increasing incidence and mortality. Although many treatments for liver cancer have been studied, the prognosis for liver cancer is still very poor. Therefore, new liver cancer treatments are urgently needed. P2X7 receptor activation can secrete proinflammatory factors through the P2X7 receptor-NLRP3 signaling pathway, thereby affecting the progression of liver injury. The P2X7 receptor may be a target for growth inhibition of HCC cells and may affect the invasion and migration of HCC cells through the PI3K/AKT and AMPK signaling pathways. In recent years, P2X7 receptor antagonists or inhibitors have attracted widespread attention as therapeutic targets for hepatocellular carcinoma and liver injury. Therefore, this review covers the basic concepts of the P2X7 receptor and role of the P2X7 receptor in liver cancer and liver injury, providing new potential therapeutic targets for hepatocellular carcinoma and liver injury.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Receptores Purinérgicos P2X7 , Neoplasias Hepáticas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Adenosina Trifosfato/metabolismo
6.
Hum Cell ; 35(5): 1346-1354, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35657562

RESUMEN

Prostate cancer is the most common malignancy of the male genitourinary system and is one of the leading causes of male cancer death. The P2X7 receptor is an important member of purine receptor family. It is a gated ion channel with adenosine triphosphate (ATP) as the ligand, which exists in a variety of immune tissues and cells and can be involved in tumorigenesis and tumor progression. Studies have shown that the P2X7 receptor is abnormally expressed in prostate cancer, and is related to the level of prostate-specific antigen, P2X7 receptor may be an early biomarker of prostate cancer. The P2X7 receptor is essential in the occurrence and development of prostate cancer. The P2X7 receptor mainly affects the invasion and metastasis of prostate cancer cells through epithelial mesenchymal transition/invasion-related genes and the PI3K/AKT and ERK1/2 signaling pathways. The P2X7 receptor could be a promising therapeutic target for prostate cancer.


Asunto(s)
Adenosina Trifosfato , Neoplasias de la Próstata , Receptores Purinérgicos P2X7 , Adenosina Trifosfato/metabolismo , Humanos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/patología , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA