Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 83(10): 1710-1724.e7, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37141888

RESUMEN

Bacterial double-stranded DNA (dsDNA) cytosine deaminase DddAtox-derived cytosine base editor (DdCBE) and its evolved variant, DddA11, guided by transcription-activator-like effector (TALE) proteins, enable mitochondrial DNA (mtDNA) editing at TC or HC (H = A, C, or T) sequence contexts, while it remains relatively unattainable for GC targets. Here, we identified a dsDNA deaminase originated from a Roseburia intestinalis interbacterial toxin (riDddAtox) and generated CRISPR-mediated nuclear DdCBEs (crDdCBEs) and mitochondrial CBEs (mitoCBEs) using split riDddAtox, which catalyzed C-to-T editing at both HC and GC targets in nuclear and mitochondrial genes. Moreover, transactivator (VP64, P65, or Rta) fusion to the tail of DddAtox- or riDddAtox-mediated crDdCBEs and mitoCBEs substantially improved nuclear and mtDNA editing efficiencies by up to 3.5- and 1.7-fold, respectively. We also used riDddAtox-based and Rta-assisted mitoCBE to efficiently stimulate disease-associated mtDNA mutations in cultured cells and in mouse embryos with conversion frequencies of up to 58% at non-TC targets.


Asunto(s)
Edición Génica , Transactivadores , Ratones , Animales , Transactivadores/metabolismo , Citosina , Mutación , ADN Mitocondrial/genética , Sistemas CRISPR-Cas
2.
Mol Ther ; 32(6): 1956-1969, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38627967

RESUMEN

Epithelial-to-mesenchymal transition (EMT) that endows cancer cells with increased invasive and migratory capacity enables cancer dissemination and metastasis. This process is tightly associated with metabolic reprogramming acquired for rewiring cell status and signaling pathways for survival in dietary insufficiency conditions. However, it remains largely unclear how transcription factor (TF)-mediated transcriptional programs are modulated during the EMT process. Here, we reveal that depletion of a key epithelial TF, ELF3 (E74-like factor-3), triggers a transforming growth factor ß (TGF-ß) signaling activation-like mesenchymal transcriptomic profile and metastatic features linked to the aminoacyl-tRNA biogenesis pathway. Moreover, the transcriptome alterations elicited by ELF3 depletion perfectly resemble an ATF4-dependent weak response to amino acid starvation. Intriguingly, we observe an exclusive enrichment of ELF3 and ATF4 in epithelial and TGF-ß-induced or ELF3-depletion-elicited mesenchymal enhancers, respectively, with rare co-binding on altered enhancers. We also find that the upregulation of aminoacyl-tRNA synthetases and some mesenchymal genes upon amino acid deprivation is diminished in ATF4-depleted cells. In sum, the loss of ELF3 binding on epithelial enhancers and the gain of ATF4 binding on the enhancers of mesenchymal factors and amino acid deprivation responsive genes facilitate the loss of epithelial cell features and the gain of TGF-ß-signaling-associated mesenchymal signatures, which further promote lung cancer cell metastasis.


Asunto(s)
Factor de Transcripción Activador 4 , Aminoácidos , Proteínas de Unión al ADN , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción , Factor de Crecimiento Transformador beta , Transición Epitelial-Mesenquimal/genética , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Aminoácidos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Línea Celular Tumoral , Transducción de Señal , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Transcriptoma , Animales
3.
Mol Ther ; 28(9): 2083-2095, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32526202

RESUMEN

Transcription growth factor ß (TGF-ß) signaling-triggered epithelial-to-mesenchymal transition (EMT) process is associated with tumor stemness, metastasis, and chemotherapy resistance. However, the epigenomic basis for TGF-ß-induced EMT remains largely unknown. Here we reveal that HDAC1-mediated global histone deacetylation and the gain of specific histone H3 lysine 27 acetylation (H3K27ac)-marked enhancers are essential for the TGF-ß-induced EMT process. Enhancers gained upon TGF-ß treatment are linked to gene activation of EMT markers and cancer metastasis. Notably, dynamic enhancer gain or loss mainly occurs within pre-existing topologically associated domains (TADs) in epithelial cells, with minimal three-dimensional (3D) genome architecture reorganization. Through motif enrichment analysis of enhancers that are lost or gained upon TGF-ß stimulation, we identify FOXA2 as a key factor to activate epithelial-specific enhancer activity, and we also find that TEAD4 forms a complex with SMAD2/3 to mediate TGF-ß signaling-triggered mesenchymal enhancer reprogramming. Together, our results implicate that key transcription-factor (TF)-mediated enhancer reprogramming modulates the developmental transition in TGF-ß signaling-associated cancer metastasis.


Asunto(s)
Reprogramación Celular/efectos de los fármacos , Elementos de Facilitación Genéticos/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología , Células A549 , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Factor Nuclear 3-beta del Hepatocito/metabolismo , Hepatocitos/metabolismo , Histona Desacetilasa 1/metabolismo , Histonas/metabolismo , Humanos , Ratones , Proteínas Musculares/metabolismo , Metástasis de la Neoplasia , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factores de Transcripción de Dominio TEA , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
4.
Cell Mol Life Sci ; 73(7): 1399-411, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26801220

RESUMEN

Early neural fate commitment is a key process in neural development and establishment of the central nervous system, and this process is tightly controlled by extrinsic signals, intrinsic factors, and epigenetic regulation. Here, we summarize the main findings regarding the regulatory network of epigenetic mechanisms that play important roles during early neural fate determination and embryonic development, including histone modifications, chromatin remodeling, DNA modifications, and RNA-level regulation. These regulatory mechanisms coordinate to play essential roles in silencing of pluripotency genes and activating key neurodevelopmental genes during cell fate commitment at DNA, histone, chromatin, and RNA levels. Moreover, we discuss the relationship between epigenetic regulation, signaling pathways, and intrinsic factors during early neural fate specification.


Asunto(s)
Epigénesis Genética , Animales , Diferenciación Celular , Sistema Nervioso Central/metabolismo , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN/química , ADN/metabolismo , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Interferencia de ARN
5.
J Biol Chem ; 290(4): 2508-20, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25519907

RESUMEN

Early neurodevelopment requires cell fate commitment from pluripotent stem cells to restricted neural lineages, which involves the epigenetic regulation of chromatin structure and lineage-specific gene transcription. However, it remains unclear how histone H3 lysine 9 acetylation (H3K9Ac), an epigenetic mark representing transcriptionally active chromatin, is involved in the neural commitment from pluripotent embryonic stem cells (ESCs). In this study, we demonstrate that H3K9Ac gradually declines during the first 4 days of in vitro neural differentiation of human ESCs (hESCs) and then increases during days 4-8. Consistent with this finding, the H3K9Ac enrichment at several pluripotency genes was decreased, and H3K9Ac occupancies at the loci of neurodevelopmental genes increased during hESC neural commitment. Inhibiting H3K9 deacetylation on days 0-4 by histone deacetylase inhibitors (HDACis) promoted hESC pluripotency and suppressed its neural differentiation. Conversely, HDACi-elicited up-regulation of H3K9 acetylation on days 4-8 enhanced neural differentiation and activated multiple neurodevelopmental genes. Mechanistically, HDACis promote pluripotency gene transcription to support hESC self-renewal through suppressing HDAC3 activity. During hESC neural commitment, HDACis relieve the inhibitory activities of HDAC1/5/8 and thereby promote early neurodevelopmental gene expression by interfering with gene-specific histone acetylation patterns. Furthermore, p300 is primarily identified as the major histone acetyltransferase involved in both hESC pluripotency and neural differentiation. Our results indicate that epigenetic modification plays pivotal roles during the early neural specification of hESCs. The histone acetylation, which is regulated by distinct HDAC members at different neurodevelopmental stages, plays dual roles in hESC pluripotency maintenance and neural differentiation.


Asunto(s)
Células Madre Embrionarias/citología , Histonas/química , Lisina/química , Células Madre Pluripotentes/citología , Acetilación , Animales , Diferenciación Celular , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Epigénesis Genética , Fibroblastos/metabolismo , Inhibidores de Histona Desacetilasas/química , Humanos , Ácidos Hidroxámicos/química , Ratones , Neuronas/metabolismo , Transcripción Genética , Factores de Transcripción p300-CBP/metabolismo
6.
Dev Growth Differ ; 57(2): 109-20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25708399

RESUMEN

Neural fate commitment is an early embryonic event that a group of cells in ectoderm, which do not ingress through primitive streak, acquire a neural fate but not epidermal or mesodermal lineages. Several extracellular signaling pathways initiated by the secreted proteins bone morphogenetic proteins (BMPs), fibroblast growth factors (FGFs), wingless/int class proteins (WNTs) and Nodal play essential roles in the specification of the neural plate. Accumulating evidence from the studies on mouse and pluripotent embryonic stem cells reveals that except for the extracellular signals, the intracellular molecules, including both transcriptional and epigenetic factors, participate in the modulation of neural fate commitment as well. In the review, we mainly focus on recent findings that the initiation of the nervous system is elaborately regulated by the intrinsic programs, which are mediated by transcriptional factors such as Sox2, Zfp521, Sip1 and Pou3f1, as well as epigenetic modifications, including histone methylation/demethylation, histone acetylation/deacetylation, and DNA methylation/demethylation. The discovery of the intrinsic regulatory machineries provides better understanding of the mechanisms by which the neural fate commitment is ensured by the cooperation between extracellular factors and intracellular molecules.


Asunto(s)
Ectodermo/embriología , Células Madre Embrionarias/metabolismo , Mesodermo/embriología , Sistema Nervioso/embriología , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Madre Embrionarias/citología , Humanos , Ratones , Sistema Nervioso/citología , Células Madre Pluripotentes/citología
7.
J Biol Chem ; 288(9): 6166-77, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23319585

RESUMEN

During early embryonic development, bone morphogenetic protein (BMP) signaling is essential for neural/non-neural cell fate decisions. BMP signaling inhibits precocious neural differentiation and allows for proper differentiation of mesoderm, endoderm, and epidermis. However, the mechanisms underlying the BMP pathway-mediated cell fate decision remain largely unknown. Here, we show that the expression of Ovol2, which encodes an evolutionarily conserved zinc finger transcription factor, is down-regulated during neural differentiation of mouse embryonic stem cells. Knockdown of Ovol2 in embryonic stem cells facilitates neural conversion and inhibits mesendodermal differentiation, whereas Ovol2 overexpression gives rise to the opposite phenotype. Moreover, Ovol2 knockdown partially rescues the neural inhibition and mesendodermal induction by BMP4. Mechanistic studies further show that BMP4 directly regulates Ovol2 expression through the binding of Smad1/5/8 to the second intron of the Ovol2 gene. In the chick embryo, cOvol2 expression is specifically excluded from neural territory and is up-regulated by BMP4. In addition, ectopic expression of cOvol2 in the prospective neural plate represses the expression of the definitive neural plate marker cSox2. Taken together, these results indicate that Ovol2 acts downstream of the BMP pathway in the cell fate decision between neuroectoderm and mesendoderm to ensure proper germ layer development.


Asunto(s)
Proteínas Aviares/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Embrión de Mamíferos/metabolismo , Endodermo/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Mesodermo/embriología , Placa Neural/embriología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Animales , Proteínas Aviares/genética , Proteína Morfogenética Ósea 4/genética , Diferenciación Celular/fisiología , Embrión de Pollo , Pollos , Embrión de Mamíferos/citología , Endodermo/citología , Técnicas de Silenciamiento del Gen , Humanos , Mesodermo/citología , Ratones , Placa Neural/citología , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo , Factores de Transcripción/genética
8.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1271-1292, 2024 May 25.
Artículo en Zh | MEDLINE | ID: mdl-38783797

RESUMEN

Programmable nucleases-based genome editing systems offer several advantages, such as high editing efficiency, high product purity, and fewer editing by-products. They have been widely used in biopharmaceutical research and crop engineering. Given the diverse needs for research and application, developing functional base editors has become a major focus in the field of genome editing. Currently, genome editing systems derived from clustered regularly interspaced short palindromic repeats and CRISPR-associated (CRISPR-Cas) and transcription activator-like effector (TALE) systems include single base editors, dual base editors, mitochondrial base editors, and CRISPR-related transposase systems. This review provides a comprehensive overview of the development of base editing systems, summarizes the characteristics, off-target effects, optimization, and improvement strategies of various base editors, and provides insights for further improvement and application of genome editing systems.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ingeniería Genética , Humanos
9.
Cancer Gene Ther ; 31(4): 612-626, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38291129

RESUMEN

Dysregulation of histone acetylation is widely implicated in tumorigenesis, yet its specific roles in the progression and metastasis of esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we profiled the genome-wide landscapes of H3K9ac for paired adjacent normal (Nor), primary ESCC (EC) and metastatic lymph node (LNC) esophageal tissues from three ESCC patients. Compared to H3K27ac, we identified a distinct epigenetic reprogramming specific to H3K9ac in EC and LNC samples relative to Nor samples. This H3K9ac-related reprogramming contributed to the transcriptomic aberration of targeting genes, which were functionally associated with tumorigenesis and metastasis. Notably, genes with gained H3K9ac signals in both primary and metastatic lymph node samples (common-gained gene) were significantly enriched in oncogenes. Single-cell RNA-seq analysis further revealed that the corresponding top 15 common-gained genes preferred to be enriched in mesenchymal cells with high metastatic potential. Additionally, in vitro experiment demonstrated that the removal of H3K9ac from the common-gained gene MSI1 significantly downregulated its transcription, resulting in deficiencies in ESCC cell proliferation and migration. Together, our findings revealed the distinct characteristics of H3K9ac in esophageal squamous cell carcinogenesis and metastasis, and highlighted the potential therapeutic avenue for intervening ESCC through epigenetic modulation via H3K9ac.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Histonas/genética , Lisina/uso terapéutico , Neoplasias Esofágicas/patología , Acetilación , Proliferación Celular/genética , Carcinogénesis , Proteínas del Tejido Nervioso , Proteínas de Unión al ARN
10.
Biotechnol J ; 18(5): e2200533, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36800529

RESUMEN

CRISPR/Cas9 system has been applied as an effective genome-targeting technology. By fusing deaminases with Cas9 nickase (nCas9), various cytosine and adenine base editors (CBEs and ABEs) have been successfully developed that can efficiently induce nucleotide conversions and install pathogenic single nucleotide variants (SNVs) in cultured cells and animal models. However, the applications of BEs are frequently limited by the specific protospacer adjacent motif (PAM) sequences and protein sizes. To expand the toolbox for BEs that can recognize novel PAM sequences, we cloned a Cas9 ortholog from Streptococcus sinensis (named as SsiCas9) with a smaller size and constructed it into APOBEC1- or APOBEC3A-composed CBEs and TadA or TadA*-composed ABEs, which yield high editing efficiencies, low off-targeting activities, and low indel rates in human cells. Compared to PAMless SpRY Cas9-composed BE4max, SsiCas9-mediated BE4max displayed higher editing efficiencies for targets with "NNAAAA" PAM sequences. Moreover, SsiCas9-mediated BE4max induced highly efficient C-to-T conversions in the mouse Ar gene (R841C) to introduce a human androgen resistance syndrome-related mutation (AR R820C) in early mouse embryos. Thus, we developed novel BEs mediated by SsiCas9, expanded the toolbox for base conversions, and broadened the range of editable genomes in vitro and in vivo.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ratones , Animales , Humanos , Sistemas CRISPR-Cas/genética , Adenina/metabolismo , Citosina/metabolismo , Nucleótidos
11.
Comput Struct Biotechnol J ; 21: 856-868, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36698964

RESUMEN

Base editing tools enable precise genome modifications, disease modeling, and promising gene therapy. However, many human genetic diseases are elicited by multi-nucleotide variants (MNVs) with heterogeneous substitutions at the same genomic locus. Based on the adenine and cytosine base editors, dual base editors that can catalyze concurrent C-to-T and A-to-G editing have been developed, while simultaneous C&G-to-T&A and A&T-to-G&C conversions on the same allele have not been achieved at the desirable site. Here we propose a strategy of combining base editors with dual guide RNAs (gRNAs) that target two overlapped neighboring loci on the opposite strands, which can induce simultaneous C&G-to-T&A and A&T-to-G&C conversions within their overlapping targeting windows. Moreover, one of the paired gRNAs is mutated to perfectly match another gRNA-edited sequence, efficiently facilitating concurrent base conversions on the same allele. To further expand the targeting scopes, PAMless SpRY Cas9-mediated base editors are combined with our optimized dual gRNAs system to induce expected concurrent base editing and to install neighboring pathogenic MNVs in TP53 in cancer cells. In addition, more complex mutation types can be achieved by integrating dual base editors and our dual gRNAs strategy. Thus, we establish a general strategy to efficiently induce MNVs in human genome, helping to dissect the functions of pathogenic MNVs with multifarious types.

12.
Adv Sci (Weinh) ; 9(30): e2200717, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36045417

RESUMEN

Selective inhibition of targeted protein kinases is an effective therapeutic approach for treatment of human malignancies, which interferes phosphorylation of cellular substrates. However, a drug-imposed selection creates pressures for tumor cells to acquire chemoresistance-conferring mutations or activating alternative pathways, which can bypass the inhibitory effects of kinase inhibitors. Thus, identifying downstream phospho-substrates conferring drug resistance is of great importance for developing poly-pharmacological and targeted therapies. To identify functional phosphorylation sites involved in 5-fluorouracil (5-FU) resistance during its treatment of colorectal cancer cells, CRISPR-mediated cytosine base editor (CBE) and adenine base editor (ABE) are utilized for functional screens by mutating phosphorylated amino acids with two libraries specifically targeting 7779 and 10 149 phosphorylation sites. Among the top enriched gRNAs-induced gain-of-function mutants, the target genes are involved in cell cycle and post-translational covalent modifications. Moreover, several substrates of RSK2 and PAK4 kinases are discovered as main effectors in responding to 5-FU chemotherapy, and combinational treatment of colorectal cancer cells with 5-FU and RSK2 inhibitor or PAK4 inhibitor can largely inhibit cell growth and enhance cell apoptosis through a RSK2/TP53BP1/γ-H2AX phosphorylation signaling axis. It is proposed that this screen approach can be used for functional phosphoproteomics in chemotherapy of various human diseases.


Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , Humanos , Resistencia a Antineoplásicos/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Adenina/farmacología , Adenina/uso terapéutico , Aminoácidos/genética , Aminoácidos/farmacología , Aminoácidos/uso terapéutico , Citosina/farmacología , Citosina/uso terapéutico , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo , Quinasas p21 Activadas/farmacología
13.
Front Cell Dev Biol ; 10: 809922, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300420

RESUMEN

CRISPR/Cas9-based base editing tools enable precise genomic installation and hold great promise for gene therapy, whereas the big size of Cas9 nucleases and its reliability on specific protospacer adjacent motif (PAM) sequences as well as target site preferences restrict the extensive applications of base editing tools. Here, we generate two cytosine base editors (CBEs) by fusing cytidine deaminases with two compact codon-optimized Cas9 orthologs from Streptococcus_gordonii_str._Challis_substr._CH1 (ancSgo-BE4) and Streptococcus_thermophilus_LMG_18311 (ancSth1a-BE4), which are much smaller than Streptococcus pyogenes (SpCas9) and recognize NNAAAG and NHGYRAA PAM sequences, respectively. Both CBEs display high activity, high fidelity, a different editing window, and low by-products for cytosine base editing with minimal DNA and RNA off-targeting activities in mammalian cells. Moreover, both editors show comparable or higher editing efficiencies than two engineered SpCas9 variant (SpCas9-NG and SpRY)-based CBEs in our tested target sites, which perfectly match the PAM sequences for ancSgo-BE4 or ancSth1a-BE4. In addition, we successfully generate two mouse models harboring clinically relevant mutations at the Ar gene via ancSgo-BE4 and ancSth1a-BE4, which display androgen insensitivity syndrome and/or developmental lethality in founder mice. Thus, the two novel CBEs broaden the base editing tool kits with expanded targeting scope and window for efficient gene modification and applications, respectively.

15.
Int J Gynecol Cancer ; 21(1): 100-5, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21330835

RESUMEN

BACKGROUND: Phosphoinositide-3-kinase (PI3K)/Akt pathway is downregulated in several human cancers, and PI3K inhibition can sensitize these cancer cells to radiation. However, no research on cervical cancer in vivo has been reported. The present study further investigated whether PI3K inhibition could sensitize cervical cancer to radiation in vivo. METHODS: HeLa cells with sustained PI3K activity and Akt phosphorylation were injected subcutaneously into BALB/C nude mice to establish tumor cell xenograft, which were randomly assigned to control, PI3K inhibitor LY294002 alone, radiation alone, or combined LY294002 and radiation group. Akt phosphorylation was detected by Western blotting to evaluate the blocking efficiency on PI3K activity. The radiosensitization of PI3K inhibition was measured by clonogenic assays, apoptosis analysis, and tumor regrowth assays. RESULTS: The combination of LY294002 and radiation resulted in significant and synergistic suppression of cervical cancer cells in a dose-dependent manner in clonogenic assays (P < 0.05), higher ratio of apoptosis cells, and more remarkable reduction of Akt phosphorylation. Tumor regrowth delay curve showed the lowest increase of tumor volume in the combined group (37 days in average) (P = 0.003). Besides, LY294002 (100 mg/kg) alone decreased cell survival and produced xenograft regrowth delay. CONCLUSIONS: Phosphoinositide-3-kinase inhibition by LY294002 can synergistically enhance radiation efficacy via dephosphorylation of Akt in cervical cancer, and PI3K inhibition alone can also suppress tumor regrowth. This may provide novel therapeutic opportunities to enhance the effect of radiotherapy against cervical cancer.


Asunto(s)
Cromonas/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Morfolinas/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Neoplasias del Cuello Uterino/radioterapia , Análisis de Varianza , Animales , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Cromonas/farmacología , Femenino , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Morfolinas/farmacología , Trasplante de Neoplasias , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Modelos de Riesgos Proporcionales , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Ensayo de Tumor de Célula Madre
16.
Zhonghua Fu Chan Ke Za Zhi ; 46(7): 516-20, 2011 Jul.
Artículo en Zh | MEDLINE | ID: mdl-22041444

RESUMEN

OBJECTIVE: To evaluate the application of pathological diagnosis by rapid paraffin sections in the diagnosis and treatment of cervical diseases. METHODS: A total of 176 cases from our hospital between September 2009 and January 2010 with abnormal cervical cancer screening (including abnormal cytology result and high-risk HPV continuous positive) were randomly divided into 2 groups. Eighty-seven cases of them whose biopsy were got by Belinson forceps under the direction of colposcopy with rapid paraffin sections by ultrasonic histopathological rapid processor and BT transparent agents were selected as group A, while 89 cases with conventional paraffin sections were selected as group B. The production time and quality for paraffin sections were analyzed in the two groups. Those diagnosed as cervical intraepithelial neoplasia (CIN) II or even worse and some special patients with CINI in the two groups received surgery, including loop electrosurgical procedure (LEEP), cold knife conization (CKC), hysterectomy or radical hysterectomy. Tissue obtained after surgery was sent for routine pathological examination. If the results of postoperative routine pathological examination were inconsistent with the rapid or routine biopsy pathological examination, the heavier results were regard as the final diagnoses. The pathological results and diagnose accordance rates were recorded and compared between group A and group B. RESULTS: The quality of sections in two groups were all satisfied or basically satisfied to meet the diagnostic requirements. There were statistically significant difference in average production time between group A and B (40 minutes vs 24 hours, P<0.05). Thirty patients in group A and 32 patients in group B received surgery. The coincidence rate of biopsy pathological results and final diagnoses were 93% (28/30) for group A and 91% (29/32) for group B, in which there were not statistically significant difference (P>0.05). CONCLUSION: Rapid paraffin sections technology is safe, accurate and economical for rapid pathological diagnosis of cervical diseases, which is worthy for being widely used in hospitals.


Asunto(s)
Cuello del Útero/patología , Técnicas Histológicas , Adhesión en Parafina/métodos , Displasia del Cuello del Útero/diagnóstico , Neoplasias del Cuello Uterino/diagnóstico , Adulto , Biopsia , Cuello del Útero/cirugía , Conización , Electrocirugia , Femenino , Humanos , Histerectomía , Persona de Mediana Edad , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/cirugía , Adulto Joven , Displasia del Cuello del Útero/patología , Displasia del Cuello del Útero/cirugía
17.
Cell Prolif ; 54(8): e13096, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34240779

RESUMEN

OBJECTIVES: PKM1 and PKM2, which are generated from the alternative splicing of PKM gene, play important roles in tumourigenesis and embryonic development as rate-limiting enzymes in glycolytic pathway. However, because of the lack of appropriate techniques, the specific functions of the 2 PKM splicing isoforms have not been clarified endogenously yet. MATERIALS AND METHODS: In this study, we used CRISPR-based base editors to perturbate the endogenous alternative splicing of PKM by introducing mutations into the splicing junction sites in HCT116 cells and zebrafish embryos. Sanger sequencing, agarose gel electrophoresis and targeted deep sequencing assays were utilized for identifying mutation efficiencies and detecting PKM1/2 splicing isoforms. Cell proliferation assays and RNA-seq analysis were performed to describe the effects of perturbation of PKM1/2 splicing in tumour cell growth and zebrafish embryo development. RESULTS: The splicing sites of PKM, a 5' donor site of GT and a 3' acceptor site of AG, were efficiently mutated by cytosine base editor (CBE; BE4max) and adenine base editor (ABE; ABEmax-NG) with guide RNAs (gRNAs) targeting the splicing sites flanking exons 9 and 10 in HCT116 cells and/or zebrafish embryos. The mutations of the 5' donor sites of GT flanking exons 9 or 10 into GC resulted in specific loss of PKM1 or PKM2 expression as well as the increase in PKM2 or PKM1 respectively. Specific loss of PKM1 promoted cell proliferation of HCT116 cells and upregulated the expression of cell cycle regulators related to DNA replication and cell cycle phase transition. In contrast, specific loss of PKM2 suppressed cell growth of HCT116 cells and resulted in growth retardation of zebrafish. Meanwhile, we found that mutation of PKM1/2 splicing sites also perturbated the expression of non-canonical PKM isoforms and produced some novel splicing isoforms. CONCLUSIONS: This work proved that CRISPR-based base editing strategy can be used to disrupt the endogenous alternative splicing of genes of interest to study the function of specific splicing isoforms in vitro and in vivo. It also reminded us to notice some novel or undesirable splicing isoforms by targeting the splicing junction sites using base editors. In sum, we establish a platform to perturbate endogenous RNA splicing for functional investigation or genetic correction of abnormal splicing events in human diseases.


Asunto(s)
Edición Génica , Piruvato Quinasa/metabolismo , Empalme Alternativo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Regulación hacia Abajo , Exones , Femenino , Células HCT116 , Humanos , Mutagénesis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piruvato Quinasa/genética , Regulación hacia Arriba , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
18.
Nat Commun ; 12(1): 2287, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863894

RESUMEN

Both adenine base editors (ABEs) and cytosine base editors (CBEs) have been recently revealed to induce transcriptome-wide RNA off-target editing in a guide RNA-independent manner. Here we construct a reporter system containing E.coli Hokb gene with a tRNA-like motif for robust detection of RNA editing activities as the optimized ABE, ABEmax, induces highly efficient A-to-I (inosine) editing within an E.coli tRNA-like structure. Then, we design mutations to disrupt the potential interaction between TadA and tRNAs in structure-guided principles and find that Arginine 153 (R153) within TadA is essential for deaminating RNAs with core tRNA-like structures. Two ABEmax or mini ABEmax variants (TadA* fused with Cas9n) with deletion of R153 within TadA and/or TadA* (named as del153/del153* and mini del153) are successfully engineered, showing minimized RNA off-targeting, but comparable DNA on-targeting activities. Moreover, R153 deletion in recently reported ABE8e or ABE8s can also largely reduce their RNA off-targeting activities. Taken together, we develop a strategy to generate engineered ABEs (eABEs) with minimized RNA off-targeting activities.


Asunto(s)
Adenosina Desaminasa/genética , Proteína 9 Asociada a CRISPR/genética , ADN/genética , Proteínas de Escherichia coli/genética , Edición Génica/métodos , Adenina/metabolismo , Adenosina Desaminasa/metabolismo , Toxinas Bacterianas/genética , Proteína 9 Asociada a CRISPR/metabolismo , Línea Celular Tumoral , Citosina/metabolismo , ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Genes Reporteros , Células HEK293 , Humanos , Inosina/genética , Inosina/metabolismo , Ingeniería de Proteínas , Edición de ARN/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , RNA-Seq , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
19.
Cell Discov ; 7(1): 101, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34711814

RESUMEN

Paternal life experiences impact offspring health via germline, and epigenetic inheritance provides a potential mechanism. However, global reprogramming during offspring embryogenesis and gametogenesis represents the largest hurdle to conceptualize it. Yet, detailed characterization of how sperm epigenetic alterations carrying "environmental memory" can evade offspring embryonic reprogramming remains elusive. Here, mice exposed to long-term restraint stress were employed to study the mechanisms underlying inter- and transgenerational effects of paternal exposure to a long-term psychological stress. We found that stress could induce paternal inheritance of reproductive, behavioral, and metabolic disorders. Bisulfite methylation profiling of 18 sperm and 12 embryo samples of three consecutive generations identified inter- and transgenerational inheritance of paternal Differential DNA Methylation Regions (DMRs) at frequencies ~11.36% and 0.48%, respectively. These DMRs related to genes with functional implications for psychological stress response, and tissue inheritance of these DMRs passed paternal disorders epigenetically to offspring. More importantly, these DMRs evaded offspring embryonic reprogramming through erasure and subsequent reestablishment, but not via un-erasure way. Nonetheless, their reestablishment proportions in the primitive streak (E7.5) stage were altered. Furthermore, sncRNA-seq revealed that stress-induced tsRNA, miRNA and rsRNA dysregulation in paternal sperm might play important roles in DMRs occurrence and paternal inheritance. These finding implied that sperm epigenetic alterations contribute to inter- and transgenerational effects of paternal exposure to long-term psychological stress, and highlighted the possible underlying molecular mechanism.

20.
Mol Ther Nucleic Acids ; 25: 494-501, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34589272

RESUMEN

Prime editing enables efficient introduction of targeted transversions, insertions, and deletions in mammalian cells and several organisms. However, genetic disease models with base deletions by prime editing have not yet been reported in mice. Here, we successfully generate a mouse model with a cataract disorder through microinjection of prime editor 3 (PE3) plasmids to efficiently induce targeted single-base deletion. Notably, a generated mouse with a high G-deletion rate (38.2%) displays a nuclear cataract phenotype; the PE3-induced deletions in mutant mice achieve high rates of germline transmission to their progenies, with phenotypic inheritance of cataract. Our data propose that modeling a genetic disease with a single nucleotide deletion in mice can be achieved with prime genome editing in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA