Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Water Sci Technol ; 89(8): 1946-1960, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38678401

RESUMEN

The bioretention system is one of the most widely used low impact development (LID) facilities with efficient purification capacity for stormwater, and its planting design has been a hot spot for research at home and abroad. In this paper, ryegrass (Lolium perenne L.), bermuda (Cynodon dactylon Linn.), bahiagrass (Paspalum notatum Flugge), and green grass (Cynodon dactylon × C .transadlensis 'Tifdwarf') were chosen as plant species to construct a shallow bioretention system. The growth traits and nutrient absorption ability of four gramineous plants were analyzed. Their tolerance, enrichment, and transportation capacity were also evaluated to compare plant species and their absorptive capacity of heavy metals (Cu, Pb, and Zn). Results showed that the maximum absorption rate (Imax) ranged from 22.1 to 42.4 µg/(g·h) for P and ranged from 65.4 to 104.8 µg/(g·h) for NH4+-N; ryegrass had the strongest absorption capacity for heavy metals and the maximum removal rates of Cu, Pb, and Zn by four grasses were 78.4, 59.4, and 51.3%, respectively; the bioretention cell with ryegrass (3#) was significantly more effective in purifying than the unplanted bioretention cell (1#) during the simulated rainfall test. Overall, the system parameters were optimized to improve the technical application of gramineous plants in the bioretention system.


Asunto(s)
Lluvia , Contaminantes Químicos del Agua , Metales Pesados , Biodegradación Ambiental , Poaceae , Lolium/metabolismo , Purificación del Agua/métodos
2.
Small ; 19(27): e2300283, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36965088

RESUMEN

Due to their potential applications in physiological monitoring, diagnosis, human prosthetics, haptic perception, and human-machine interaction, flexible tactile sensors have attracted wide research interest in recent years. Thanks to the advances in material engineering, high performance flexible tactile sensors have been obtained. Among the representative pressure sensing materials, 2D layered nanomaterials have many properties that are superior to those of bulk nanomaterials and are more suitable for high performance flexible sensors. As a class of 2D inorganic compounds in materials science, MXene has excellent electrical, mechanical, and biological compatibility. MXene-based composites have proven to be promising candidates for flexible tactile sensors due to their excellent stretchability and metallic conductivity. Therefore, great efforts have been devoted to the development of MXene-based composites for flexible sensor applications. In this paper, the controllable preparation and characterization of MXene are introduced. Then, the recent progresses on fabrication strategies, operating mechanisms, and device performance of MXene composite-based flexible tactile sensors, including flexible piezoresistive sensors, capacitive sensors, piezoelectric sensors, triboelectric sensors are reviewed. After that, the applications of MXene material-based flexible electronics in human motion monitoring, healthcare, prosthetics, and artificial intelligence are discussed. Finally, the challenges and perspectives for MXene-based tactile sensors are summarized.


Asunto(s)
Inteligencia Artificial , Estereognosis , Humanos , Conductividad Eléctrica , Electricidad
3.
J Environ Manage ; 344: 118401, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37364487

RESUMEN

As the requirements for environmental protection and high-efficiency economies increase, grain production (GP) across the globe faces more stringent ecological constraints and economic pressure. Understanding the relationships between natural resources and economic and agricultural factors in grain-producing regions is paramount for ensuring global food security. This paper proposes a methodological framework to explore the relationships between water and soil resources (WSRs), economic input factors (EIFs), and GP. We employed the northeast region of China as a case study to advance our understanding of the factors driving the development of grain-producing capacity. We first constructed and calculated the region's water and soil comprehensive index (WSCI) to describe water-soil properties. We then used hotspot analysis to explore the spatial agglomeration characteristics of WSRs, EIFs, and GP. Finally, we used threshold regression analysis to understand the effects of EIFs and GP with the WSCI as the threshold variable. With the improvement of the WSCI, the positive impact of fertilizer and irrigation on GP shows a U-shaped curve in elasticity coefficients. The positive effect of agricultural machinery on GP decreases significantly, and the impact of labor input on GP is insignificant. These results provide new insights into the relationship between WSRs, EIFs, and GP and a reference for improving GP efficiency globally. This work thus contributes to advancing our capabilities to enable food security while considering aspects of sustainable agriculture in important grain-producing regions across the globe.


Asunto(s)
Suelo , Agua , Agricultura , Grano Comestible , Conservación de los Recursos Naturales/métodos , China , Recursos Hídricos
4.
Molecules ; 28(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36838615

RESUMEN

Flexible sensors are the essential foundations of pressure sensing, microcomputer sensing systems, and wearable devices. The flexible tactile sensor can sense stimuli by converting external forces into electrical signals. The electrical signals are transmitted to a computer processing system for analysis, realizing real-time health monitoring and human motion detection. According to the working mechanism, tactile sensors are mainly divided into four types-piezoresistive, capacitive, piezoelectric, and triboelectric tactile sensors. Conventional silicon-based tactile sensors are often inadequate for flexible electronics due to their limited mechanical flexibility. In comparison, polymeric nanocomposites are flexible and stretchable, which makes them excellent candidates for flexible and wearable tactile sensors. Among the promising polymers, conjugated polymers (CPs), due to their unique chemical structures and electronic properties that contribute to their high electrical and mechanical conductivity, show great potential for flexible sensors and wearable devices. In this paper, we first introduce the parameters of pressure sensors. Then, we describe the operating principles of resistive, capacitive, piezoelectric, and triboelectric sensors, and review the pressure sensors based on conjugated polymer nanocomposites that were reported in recent years. After that, we introduce the performance characteristics of flexible sensors, regarding their applications in healthcare, human motion monitoring, electronic skin, wearable devices, and artificial intelligence. In addition, we summarize and compare the performances of conjugated polymer nanocomposite-based pressure sensors that were reported in recent years. Finally, we summarize the challenges and future directions of conjugated polymer nanocomposite-based sensors.


Asunto(s)
Nanocompuestos , Dispositivos Electrónicos Vestibles , Humanos , Polímeros , Inteligencia Artificial , Nanocompuestos/química , Tacto
5.
Sensors (Basel) ; 22(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36560275

RESUMEN

Conventional reconnaissance camera systems have been flown on manned aircraft, where the weight, size, and power requirements are not stringent. However, today, these parameters are important for unmanned aerial vehicles (UAVs). This article provides a solution to the design of airborne large aperture infrared optical systems, based on a monocentric lens that can meet the strict criteria of aerial reconnaissance UAVs for a wide field of view (FOV) and lightness of airborne electro-optical pod cameras. A monocentric lens has a curved image plane, consisting of an array of microsensors, which can provide an image with 368 megapixels over a 100° FOV. We obtained the initial structure of a five-glass (5GS) asymmetric monocentric lens with an air gap, using ray-tracing and global optimization algorithms. According to the design results, the ground sampling distance (GSD) of the system is 0.33 m at 3000 m altitude. The full-field modulation transfer function (MTF) value of the system is more than 0.4 at a Nyquist frequency of 70 lp/mm. We present a primary thermal control method, and the image quality was steady throughout the operating temperature range. This compactness and simple structure fulfill the needs of uncrewed airborne lenses. This work may facilitate the practical application of monocentric lens in UAVs.

6.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34445565

RESUMEN

Jasmonate ZIM-domain (JAZ) proteins are the crucial transcriptional repressors in the jasmonic acid (JA) signaling process, and they play pervasive roles in plant development, defense, and plant specialized metabolism. Although numerous JAZ gene families have been discovered across several plants, our knowledge about the JAZ gene family remains limited in the economically and medicinally important Chinese herb Mentha canadensis L. Here, seven non-redundant JAZ genes named McJAZ1-McJAZ7 were identified from our reported M. canadensis transcriptome data. Structural, amino acid composition, and phylogenetic analysis showed that seven McJAZ proteins contained the typical zinc-finger inflorescence meristem (ZIM) domain and JA-associated (Jas) domain as conserved as those in other plants, and they were clustered into four groups (A-D) and distributed into five subgroups (A1, A2, B1, B2, and D). Quantitative real-time PCR (qRT-PCR) analysis showed that seven McJAZ genes displayed differential expression patterns in M. canadensis tissues, and preferentially expressed in flowers. Furthermore, the McJAZ genes expression was differentially induced after Methyl jasmonate (MeJA) treatment, and their transcripts were variable and up- or down-regulated under abscisic acid (ABA), drought, and salt treatments. Subcellular localization analysis revealed that McJAZ proteins are localized in the nucleus or cytoplasm. Yeast two-hybrid (Y2H) assays demonstrated that McJAZ1-5 interacted with McCOI1a, a homolog of Arabidopsis JA receptor AtCOI1, in a coronatine-dependent manner, and most of McJAZ proteins could also form homo- or heterodimers. This present study provides valuable basis for functional analysis and exploitation of the potential candidate McJAZ genes for developing efficient strategies for genetic improvement of M. canadensis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Mentha/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Transcriptoma , Secuencia de Aminoácidos , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Mentha/genética , Mentha/crecimiento & desarrollo , Familia de Multigenes , Proteínas de Plantas/genética , Homología de Secuencia
7.
Materials (Basel) ; 17(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38893757

RESUMEN

With the arrival of the Internet of Things era, the demand for tactile sensors continues to grow. However, traditional sensors mostly require an external power supply to meet real-time monitoring, which brings many drawbacks such as short service life, environmental pollution, and difficulty in replacement, which greatly limits their practical applications. Therefore, the development of a passive self-power supply of tactile sensors has become a research hotspot in academia and the industry. In this review, the development of self-powered tactile sensors in the past several years is introduced and discussed. First, the sensing principle of self-powered tactile sensors is introduced. After that, the main performance parameters of the tactile sensors are briefly discussed. Finally, the potential application prospects of the tactile sensors are discussed in detail.

8.
ACS Appl Bio Mater ; 6(6): 2394-2403, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37216601

RESUMEN

Photodynamic therapy (PDT) is considered as a promising therapeutic approach for clinical cancer treatment. However, the hypoxia of the tumor microenvironment leads to the low effect of single PDT. Here, a dual-photosensitizer nanoplatform based on near-infrared excitation orthogonal emission nanomaterials is constructed by introducing two kinds of photosensitizers into the nanosystem. Orthogonal emission upconversion nanoparticles (OE-UCNPs) were used as light conversion reagents to generate red emission under 980 nm irradiation and green emission under 808 nm irradiation. On the one hand, merocyanine 540 (MC540) is introduced as a photosensitizer (PS), which can absorb green light to generate reactive oxygen species (ROS) and trigger PDT for tumor treatment. On the other hand, another photosensitizer, chlorophyll a (Chla), which can be excited by red light, has also been introduced into the system to build a dual PDT nanotherapeutic platform. The introduction of photosensitizer Chla can synergistically increase ROS concentration to accelerate cancer cell apoptosis. Our research shows that this dual PDT nanotherapeutic platform combined with Chla has better therapeutic effects and effectively destroys cancer.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno , Clorofila A , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Microambiente Tumoral
9.
ACS Appl Mater Interfaces ; 15(25): 30486-30494, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37315104

RESUMEN

Flexible tactile sensors with high sensitivity, a broad pressure detection range, and high resolution are highly desired for the applications of health monitoring, robots, and the human-machine interface. However, it is still challenging to realize a tactile sensor with high sensitivity and resolution over a wide detection range. Herein, to solve the abovementioned problem, we demonstrate a universal route to develop a highly sensitive tactile sensor with high resolution and a wide pressure range. The tactile sensor is composed of two layers of microstructured flexible electrodes with high modulus and conductive cotton fabric with low modulus. By optimizing the sensing films, the fabricated tactile sensor shows a high sensitivity of 8.9 × 104 kPa-1 from 2 Pa to 250 kPa because of the high structural compressibility and stress adaptation of the multilayered composite films. Meanwhile, a fast response speed of 18 ms, an ultrahigh resolution of 100 Pa over 100 kPa, and excellent durability over 20 000 loading/unloading cycles are demonstrated. Moreover, a 6 × 6 tactile sensor array is fabricated and shows promising potential application in electronic skin (e-skin). Therefore, employing multilayered composite films for tactile sensors is a novel strategy to achieve high-performance tactile perception in real-time health monitoring and artificial intelligence.

10.
Mol Plant Pathol ; 15(7): 690-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24521457

RESUMEN

To activate the expression of host genes that contribute to pathogen growth, pathogenic Xanthomonas bacteria inject their transcription activator-like effectors (TALEs) into plant cells and the TALEs bind to target gene promoters by the central repeat region consisting of near-perfect 34-amino-acid repeats (34-aa repeats). Based on the recognition codes between the 34-aa repeats and the targeted nucleotides, TALE-based technologies, such as designer TALEs (dTALEs) and TALE nucleases (TALENs), have been developed. Amazingly, every natural TALE invariantly has a truncated last half-repeat (LHR) at the end of the 34-aa repeats. Consequently, all the reported dTALEs and TALENs also harbour their LHRs. Here, we show that the LHRs in dTALEs are dispensable for the function of gene activation by both transient expression assays in Nicotiana benthamiana and gene-specific targeting in the rice genome, indicating that TALEs might originate from a single progenitor. In the light of this finding, we demonstrate that dTALEs can be constructed through two simple steps. Moreover, the activation strengths of dTALEs lacking the LHR are comparable with those of dTALEs harbouring the LHR. Our results provide new insights into the origin of natural TALEs, and will facilitate the simplification of the design and assembly of TALE-based tools, such as dTALEs and TALENs, in the near future.


Asunto(s)
Proteínas Bacterianas/metabolismo , Secuencias Repetitivas de Aminoácido , Transactivadores/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Genoma de Planta , Glucuronidasa/genética , Datos de Secuencia Molecular , Oryza/genética , Homología de Secuencia de Aminoácido , Nicotiana/enzimología , Nicotiana/microbiología , Transactivadores/química , Xanthomonas/metabolismo , Xanthomonas/patogenicidad
11.
Mol Plant Pathol ; 15(4): 333-41, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24286630

RESUMEN

Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is not only a disease devastating rice production worldwide, but also an ideal model system for the study of the interaction between plants and their bacterial pathogens. The rice near-isogenic line (NIL) CBB23, derived from a cross between a wild rice Oryza rufipogon accession (RBB16) and a susceptible indica rice variety (Jingang 30), is highly resistant to all field Xoo strains tested so far. Although the BB resistance of CBB23 has been widely used in rice breeding programmes, the mechanism of its extremely broad-spectrum resistance remains unknown. Here, we report the molecular cloning of an avirulence gene, designated as avrXa23, from Xoo strain PXO99(A) . We validate that AvrXa23, a novel transcription activator-like effector, specifically triggers the broad-spectrum BB resistance in CBB23. The prevalence of avrXa23 in all 38 Xoo strains surveyed may explain the broad-spectrum feature of BB resistance in CBB23. The results will significantly facilitate the molecular cloning of the corresponding resistance (R) gene in the host, and provide new insights into our understanding of the molecular mechanism for broad-spectrum disease resistance in plants.


Asunto(s)
Proteínas Bacterianas/metabolismo , Oryza/metabolismo , Oryza/parasitología , Enfermedades de las Plantas/microbiología , Xanthomonas/patogenicidad , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA