Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Small ; 20(8): e2304110, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37806756

RESUMEN

Atherosclerosis (AS) is the primary reason behind cardiovascular diseases, leading to approximately one-third of global deaths. Developing a novel multi-model probe to detect AS is urgently required. Macrophages are the primary cells from which AS genesis occurs. Utilizing natural macrophage membranes coated on the surface of nanoparticles is an efficient delivery method to target plaque sites. Herein, Fe3 O4 -Cy7 nanoparticles (Fe3 O4 -Cy7 NPs), functionalized using an M2 macrophage membrane and a liposome extruder for Near-infrared fluorescence and Magnetic resonance imaging, are synthesized. These macrophage membrane-coated nanoparticles (Fe3 O4 @M2 NPs) enhance the recognition and uptake using active macrophages. Moreover, they inhibit uptake using inactive macrophages and human coronary artery endothelial cells. The macrophage membrane-coated nanoparticles (Fe3 O4 @M0 NPs, Fe3 O4 @M1 NPs, Fe3 O4 @M2 NPs) can target specific sites depending on the macrophage membrane type and are related to C-C chemofactor receptor type 2 protein content. Moreover, Fe3 O4 @M2 NPs demonstrate excellent biosafety in vivo after injection, showing a significantly higher Fe concentration in the blood than Fe3 O4 -Cy7 NPs. Therefore, Fe3 O4 @M2 NPs effectively retain the physicochemical properties of nanoparticles and depict reduced immunological response in blood circulation. These NPs mainly reveal enhanced targeting imaging capability for atherosclerotic plaque lesions.


Asunto(s)
Aterosclerosis , Nanopartículas , Humanos , Células Endoteliales , Nanopartículas/química , Imagen por Resonancia Magnética/métodos , Aterosclerosis/diagnóstico por imagen
2.
Talanta ; 265: 124772, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37327664

RESUMEN

Recently, photodynamic therapy (PDT) has been considered as a new strategy for atherosclerosis treatment. Targeted delivery of photosensitizer could significantly reduce its toxicity and enhance its phototherapeutic efficiency. CD68 is an antibody that can be conjugated to nano-drug delivery systems to actively target plaque sites, owing to its specific binding to CD68 receptors that are highly expressed on the surfaces of macrophage-derived foam cells. Liposomes are very popular nanocarriers due to their ability to encapsulate a wide range of therapeutic compounds including drugs, microRNAs and photosensitizers, and their ability to be surface-modified with targeting moieties leading to the development of nanocarriers with an improved targeted ability. Hence, we designed a Ce6-loaded liposomes using the film dispersion method, followed by the conjugation of CD68 antibody on the liposomal surface through a covalent crosslinking reaction, forming CD68-modified Ce6-loaded liposomes (CD68-Ce6-mediated liposomes). Flow cytometry results indicated that Ce6-containing liposomes were more effective in promoting intracellular uptake after laser irradiation. Furthermore, CD68-modified liposomes significantly strengthened the cellular recognization and thus internalization. Different cell lines have been incubated with the liposomes, and the results showed that CD68-Ce6-mediated liposomes had no significant cytotoxicity to coronary artery endothelial cells (HCAEC) under selected conditions. Interestingly, they promoted autophagy in foam cells through the increase in LC3-Ⅰ, LC3-Ⅱ expression and the decrease in p62 expression, and restrained the migration of mouse aortic vascular smooth muscle cells (MOVAS) in vitro. Moreover, the enhancement of atherosclerotic plaque stability and the reduction in the cholesterol content by CD68-Ce6-mediated liposomes were dependent on transient reactive oxygen species (ROS) generated under laser irradiation. In summary, we demonstrated that CD68-Ce6-mediated liposomes, as a photosensitizer nano-drug delivery system, have an inhibitory effect on MOVAS migration and a promotion of cholesterol efflux in foam cells, and thereby, represent promising nanocarriers for atherosclerosis photodynamic therapy.


Asunto(s)
Aterosclerosis , Nanopartículas , Fotoquimioterapia , Placa Aterosclerótica , Porfirinas , Ratones , Animales , Fármacos Fotosensibilizantes , Liposomas , Placa Aterosclerótica/tratamiento farmacológico , Células Endoteliales , Fotoquimioterapia/métodos , Aterosclerosis/tratamiento farmacológico , Porfirinas/farmacología , Porfirinas/química , Línea Celular Tumoral , Nanopartículas/química
3.
ACS Biomater Sci Eng ; 7(8): 3503-3529, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34291638

RESUMEN

The complexity of the nervous system structure and function, and its slow regeneration rate, makes it more difficult to treat compared to other tissues in the human body when an injury occurs. Moreover, the current therapeutic approaches including the use of autografts, allografts, and pharmacological agents have several drawbacks and can not fully restore nervous system injuries. Recently, nanotechnology and tissue engineering approaches have attracted many researchers to guide tissue regeneration in an effective manner. Owing to their remarkable physicochemical and biological properties, two-dimensional (2D) nanomaterials have been extensively studied in the tissue engineering and regenerative medicine field. The great conductivity of these materials makes them a promising candidate for the development of novel scaffolds for neural tissue engineering application. Moreover, the high loading capacity of 2D nanomaterials also has attracted many researchers to utilize them as a drug/gene delivery method to treat various devastating nervous system disorders. This review will first introduce the fundamental physicochemical properties of 2D nanomaterials used in biomedicine and the supporting biological properties of 2D nanomaterials for inducing neuroregeneration, including their biocompatibility on neural cells, the ability to promote the neural differentiation of stem cells, and their immunomodulatory properties which are beneficial for alleviating chronic inflammation at the site of the nervous system injury. It also discusses various types of 2D nanomaterials-based scaffolds for neural tissue engineering applications. Then, the latest progress on the use of 2D nanomaterials for nervous system disorder treatment is summarized. Finally, a discussion of the challenges and prospects of 2D nanomaterials-based applications in neural tissue engineering is provided.


Asunto(s)
Nanoestructuras , Ingeniería de Tejidos , Humanos , Nanotecnología , Sistema Nervioso , Medicina Regenerativa
4.
Colloids Surf B Biointerfaces ; 205: 111844, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34015732

RESUMEN

The development of diversified biomaterials in tissue engineering has been promoted by growing research into carbon-based nanomaterials. Usually, ideal scaffold materials should possess properties similar to the extracellular matrix of natural myocardial tissue. In this study, dopamine-reduced graphene oxide (GO), was prepared and doped into gelatin methacrylate (GelMA) hydrogels, resulting in novel conductive and mechanical properties for controlling cell growth. Cardiomyocytes (CMs) cultured on PDA-rGO-incorporated hydrogels (GelMA-PDA-rGO) had greater cytocompatibility than those cultured on GelMA hydrogels, as evidenced by higher cell survival rates and up-regulation of cardiac-relevant proteins. Finally, electrical stimulation was applied to facilitate the maturation of CMs which was seeded on different hydrogels. The findings revealed that electrical stimulation of conductive hybrid hydrogel scaffolds improved the orientational order parameter of sarcomeres (OOP). In addition, propagation of intercellular pacing signals, which improves the expression of gap junction proteins was noticed, likewise calcium handling capacity was present in conductive hybrid hydrogels compared to those in pure GelMA group. This study has shown that the combination of GelMA-PDA-rGO based conductive hydrogels and electrical stimulation possessed synergistic effects for engineering a more functional and mature myocardium layer as well as further application in drug screening and disease modeling in vitro.


Asunto(s)
Hidrogeles , Miocitos Cardíacos , Animales , Animales Recién Nacidos , Estimulación Eléctrica , Gelatina , Grafito , Indoles , Polímeros , Ratas , Ingeniería de Tejidos , Andamios del Tejido
5.
Biosens Bioelectron ; 179: 113080, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33639347

RESUMEN

In vitro model of the human cardiac tissues generated from human induced pluripotent stem cells (hiPSCs) could facilitate drug discovery and patient-specific studies of physiology and disease. However, the immature state of hiPSC-derived cardiomyocytes (hiPSC-CMs) compared to adult myocardium is a key defect that must be overcome to enable the potential applications of hiPSC-CMs in drug testing. For this purpose, we developed a heart-on-a-chip device that contains microfluidic channels for long-term dynamic culture of cells, platinum wire electrodes for electrical stimulation of hiPSC-CMs, and gold electrode arrays as acquisition electrodes for real-time recording electrophysiological signals of cardiac tissues. Human iPSC-CMs cultured on biocompatible hydrogels in the chip chamber can be electrically stimulated to prompt the maturation of cardiomyocytes (CMs) and generate functional cardiac tissues. Drug tests were performed with calcium transient measurements to evaluate drug responsiveness of electrical stimulated and unstimulated cardiac tissues. The results show that only the electrical-stimulated cardiac tissues respond correctly to drug treatment of verapamil and isoprenaline, indicating the reliability of this engineered cardiac tissues for drug testing. The above integrated heart-on-a-chip device provides a promising platform for drug efficacy testing and cardiactoxicity.


Asunto(s)
Técnicas Biosensibles , Células Madre Pluripotentes Inducidas , Adulto , Diferenciación Celular , Células Cultivadas , Humanos , Dispositivos Laboratorio en un Chip , Miocitos Cardíacos , Reproducibilidad de los Resultados
6.
J Mater Chem B ; 8(35): 8085, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32936205

RESUMEN

Correction for 'High-aspect-ratio water-dispersed gold nanowires incorporated within gelatin methacrylate hydrogels for constructing cardiac tissues in vitro' by Xiao-Pei Li et al., J. Mater. Chem. B, 2020, 8, 7213-7224, DOI: .

7.
J Mater Chem B ; 8(32): 7213-7224, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32638823

RESUMEN

The field of cardiac tissue engineering has made significant strides in therapeutic and pharmaceutical applications, highlighted by the development of smart biomaterials. Scaffolds with appropriate properties mimicking the nature of a heart matrix will be highly beneficial for cardiac tissue engineering. In this study, high-aspect-ratio water-dispersed gold nanowires (AuNWs) were synthesized and incorporated into gelatin methacrylate (GelMA) hydrogels, demonstrating enhanced electrical conductivity and mechanical properties of the biomaterial scaffolds. Cardiac cells cultured on GelMA-AuNW hybrid hydrogels exhibited better biological activities such as cell viability and maturation state compared to those cultured on GelMA hydrogels. Moreover, cardiomyocytes showed synchronous beating activity and a faster spontaneous beating rate on GelMA-AuNW hybrid hydrogels. Our strategy of integrating high-aspect-ratio water-dispersed gold nanowires within gelatin methacrylate hydrogels provides a favorable biomaterial scaffold to construct functional cardiac tissue for further applications in cardiac tissue engineering and drug screening.


Asunto(s)
Gelatina/química , Oro/química , Hidrogeles/química , Metacrilatos/química , Miocitos Cardíacos/metabolismo , Nanocables/química , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Calcio/metabolismo , Técnicas de Cultivo de Célula , Proliferación Celular , Supervivencia Celular , Conductividad Eléctrica , Gelatina/metabolismo , Ventrículos Cardíacos , Humanos , Hidrogeles/metabolismo , Fenómenos Mecánicos , Miocitos Cardíacos/citología , Procesos Fotoquímicos , Fármacos Fotosensibilizantes/química , Ratas Sprague-Dawley , Ingeniería de Tejidos , Agua
8.
ACS Biomater Sci Eng ; 5(6): 3022-3031, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33405656

RESUMEN

Harnessing biomaterials for in vitro tissue construction has long been a research focus because of its powerful potentials in tissue engineering and pharmaceutical industry. Myocardium is a critical cardiac tissue with complex multiple muscular layers. Considering the specific characters of native cardiac tissues, it is necessary to design a biocompatible and biomimetic platform for cardiomyocyte culture and myocardium formation with sustained physiological function. In this study, we developed gelatin-based hydrogels chemically cross-linked by genipin, a biocompatible cross-linker, as cell culture scaffolds. Moreover, to achieve and maintain the functionality of myocardium, for instance, well-organized cardiomyocytes and synchronized contractile behavior, we fabricated gelatin-based hydrogels with patterned microstructure using a microcontact printing technique. Furthermore, graphene oxide (GO), with unprecedented physical and chemical properties, has also been incorporated into gelatin for culturing cardiomyocytes. Our results show that micropatterned genipin-cross-linked gelatin hydrogels are very helpful to promote alignment and maturation of neonatal rat ventricular cardiomyocytes. More interestingly, the presence of GO significantly enhances the functional performance of cardiomyocytes, including an increase in contraction amplitude and cardiac gene expression. The cultured cardiomyocytes reach a well-synchronized contraction within 48 h of cell seeding and keep beating for up to 3 months. Our study provides a new and easy-to-use gelatin-based scaffold for improving physiological function of engineered cardiac tissues, exhibiting promising applications in cardiac tissue engineering and drug screening.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA