Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918307

RESUMEN

Disturbance of protein kinase activity may result in dramatic consequences that often lead to cancer development and progression. In tumors of blood origin, both tyrosine kinases and serine/threonine kinases are altered by different types of mutations, critically regulating cancer hallmarks. CK1α and CK2 are highly conserved, ubiquitously expressed and constitutively active pleiotropic kinases, which participate in multiple biological processes. The involvement of these kinases in solid and blood cancers is well documented. CK1α and CK2 are overactive in multiple myeloma, leukemias and lymphomas. Intriguingly, they are not required to the same degree for the viability of normal cells, corroborating the idea of "druggable" kinases. Different to other kinases, mutations on the gene encoding CK1α and CK2 are rare or not reported. Actually, these two kinases are outside the paradigm of oncogene addiction, since cancer cells' dependency on these proteins resembles the phenomenon of "non-oncogene" addiction. In this review, we will summarize the general features of CK1α and CK2 and the most relevant oncogenic and stress-related signaling nodes, regulated by kinase phosphorylation, that may lead to tumor progression. Finally, we will report the current data, which support the positioning of these two kinases in the therapeutic scene of hematological cancers.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Caseína Quinasa Ialfa/metabolismo , Neoplasias Hematológicas/metabolismo , Animales , Quinasa de la Caseína II/antagonistas & inhibidores , Caseína Quinasa Ialfa/antagonistas & inhibidores , Neoplasias Hematológicas/tratamiento farmacológico , Humanos , Terapia Molecular Dirigida , Estrés Fisiológico
2.
Front Immunol ; 15: 1393485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807597

RESUMEN

Introduction: In classical Hodgkin lymphoma (cHL), the survival of neoplastic cells is mediated by the activation of NF-κB, JAK/STAT and PI3K/Akt signaling pathways. CK2 is a highly conserved serine/threonine kinase, consisting of two catalytic (α) and two regulatory (ß) subunits, which is involved in several cellular processes and both subunits were found overexpressed in solid tumors and hematologic malignancies. Methods and results: Biochemical analyses and in vitro assays showed an impaired expression of CK2 subunits in cHL, with CK2α being overexpressed and a decreased expression of CK2ß compared to normal B lymphocytes. Mechanistically, CK2ß was found to be ubiquitinated in all HL cell lines and consequently degraded by the proteasome pathway. Furthermore, at basal condition STAT3, NF-kB and AKT are phosphorylated in CK2-related targets, resulting in constitutive pathways activation. The inhibition of CK2 with CX-4945/silmitasertib triggered the de-phosphorylation of NF-κB-S529, STAT3-S727, AKT-S129 and -S473, leading to cHL cell lines apoptosis. Moreover, CX-4945/silmitasertib was able to decrease the expression of the immuno-checkpoint CD274/PD-L1 but not of CD30, and to synergize with monomethyl auristatin E (MMAE), the microtubule inhibitor of brentuximab vedotin. Conclusions: Our data point out a pivotal role of CK2 in the survival and the activation of key signaling pathways in cHL. The skewed expression between CK2α and CK2ß has never been reported in other lymphomas and might be specific for cHL. The effects of CK2 inhibition on PD-L1 expression and the synergistic combination of CX-4945/silmitasertib with MMAE pinpoints CK2 as a high-impact target for the development of new therapies for cHL.


Asunto(s)
Antígeno B7-H1 , Quinasa de la Caseína II , Enfermedad de Hodgkin , Transducción de Señal , Humanos , Enfermedad de Hodgkin/metabolismo , Enfermedad de Hodgkin/tratamiento farmacológico , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/patología , Quinasa de la Caseína II/metabolismo , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Línea Celular Tumoral , Fenazinas , Naftiridinas/farmacología , Apoptosis , Regulación Neoplásica de la Expresión Génica , Fosforilación
3.
Hemasphere ; 7(12): e978, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38026791

RESUMEN

The Ser-Thr kinase CK2 plays important roles in sustaining cell survival and resistance to stress and these functions are exploited by different types of blood tumors. Yet, the physiological involvement of CK2 in normal blood cell development is poorly known. Here, we discovered that the ß regulatory subunit of CK2 is critical for normal hematopoiesis in the mouse. Fetal livers of conditional CK2ß knockout embryos showed increased numbers of hematopoietic stem cells associated to a higher proliferation rate compared to control animals. Both hematopoietic stem and progenitor cells (HSPCs) displayed alterations in the expression of transcription factors involved in cell quiescence, self-renewal, and lineage commitment. HSPCs lacking CK2ß were functionally impaired in supporting both in vitro and in vivo hematopoiesis as demonstrated by transplantation assays. Furthermore, KO mice developed anemia due to a reduced number of mature erythroid cells. This compartment was characterized by dysplasia, proliferative defects at early precursor stage, and apoptosis at late-stage erythroblasts. Erythroid cells exhibited a marked compromise of signaling cascades downstream of the cKit and erythropoietin receptor, with a defective activation of ERK/JNK, JAK/STAT5, and PI3K/AKT pathways and perturbations of several transcriptional programs as demonstrated by RNA-Seq analysis. Moreover, we unraveled an unforeseen molecular mechanism whereby CK2 sustains GATA1 stability and transcriptional proficiency. Thus, our work demonstrates new and crucial functions of CK2 in HSPC biology and in erythropoiesis.

4.
Front Cell Dev Biol ; 10: 935023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035991

RESUMEN

Mantle cell lymphoma (MCL) is an incurable B cell non-Hodgkin lymphoma, characterized by frequent relapses. In the last decade, the pro-survival pathways related to BCR signaling and Bcl-2 have been considered rational therapeutic targets in B cell derived lymphomas. The BTK inhibitor Ibrutinib and the Bcl-2 inhibitor Venetoclax are emerging as effective drugs for MCL. However, primary and acquired resistance also to these agents may occur. Protein Kinase CK2 is a S/T kinase overexpressed in many solid and blood-derived tumours. CK2 promotes cancer cell growth and clonal expansion, sustaining pivotal survival signaling cascades, such as the ones dependent on AKT, NF-κB, STAT3 and others, counteracting apoptosis through a "non-oncogene" addiction mechanism. We previously showed that CK2 is overexpressed in MCL and regulates the levels of activating phosphorylation on S529 of the NF-κB family member p65/RelA. In the present study, we investigated the effects of CK2 inactivation on MCL cell proliferation, survival and apoptosis and this kinase's involvement in the BCR and Bcl-2 related signaling. By employing CK2 loss of function MCL cell models, we demonstrated that CK2 sustains BCR signaling (such as BTK, NF-κB and AKT) and the Bcl-2-related Mcl-1 expression. CK2 inactivation enhanced Ibrutinib and Venetoclax-induced cytotoxicity. The demonstration of a CK2-dependent upregulation of pathways that may antagonize the effect of these drugs may offer a novel strategy to overcome primary and secondary resistance.

5.
Cancers (Basel) ; 14(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077711

RESUMEN

Multiple myeloma (MM) is a malignant plasma cell (PC) neoplasm, which also displays pathological bone involvement. Clonal expansion of MM cells in the bone marrow causes a perturbation of bone homeostasis that culminates in MM-associated bone disease (MMABD). We previously demonstrated that the S/T kinase CK1α sustains MM cell survival through the activation of AKT and ß-catenin signaling. CK1α is a negative regulator of the Wnt/ß-catenin cascade, the activation of which promotes osteogenesis by directly stimulating the expression of RUNX2, the master gene regulator of osteoblastogenesis. In this study, we investigated the role of CK1α in the osteoblastogenic potential of mesenchymal stromal cells (MSCs) and its involvement in MM-MSC cross-talk. We found that CK1α silencing in in vitro co-cultures of MMs and MSCs modulated RUNX2 expression differently in PCs and in MSCs, mainly through the regulation of Wnt/ß-catenin signaling. Our findings suggest that the CK1α/RUNX2 axis could be a potential therapeutic target for constraining malignant PC expansion and supporting the osteoblastic transcriptional program of MSCs, with potential for ameliorating MMABD. Moreover, considering that Lenalidomide treatment leads to MM cell death through Ikaros, Aiolos and CK1α proteasomal degradation, we examined its effects on the osteoblastogenic potential of MSC compartments.

6.
Front Immunol ; 13: 959138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713383

RESUMEN

Serine-Threonine kinase CK2 supports malignant B-lymphocyte growth but its role in B-cell development and activation is largely unknown. Here, we describe the first B-cell specific knockout (KO) mouse model of the ß regulatory subunit of CK2. CK2ßKO mice present an increase in marginal zone (MZ) and a reduction in follicular B cells, suggesting a role for CK2 in the regulation of the B cell receptor (BCR) and NOTCH2 signaling pathways. Biochemical analyses demonstrate an increased activation of the NOTCH2 pathway in CK2ßKO animals, which sustains MZ B-cell development. Transcriptomic analyses indicate alterations in biological processes involved in immune response and B-cell activation. Upon sheep red blood cells (SRBC) immunization CK2ßKO mice exhibit enlarged germinal centers (GCs) but display a limited capacity to generate class-switched GC B cells and immunoglobulins. In vitro assays highlight that B cells lacking CK2ß have an impaired signaling downstream of BCR, Toll-like receptor, CD40, and IL-4R all crucial for B-cell activation and antigen presenting efficiency. Somatic hypermutations analysis upon 4-Hydroxy-3-nitrophenylacetyl hapten conjugated to Chicken Gamma Globulin (NP-CGG) evidences a reduced NP-specific W33L mutation frequency in CK2ßKO mice suggesting the importance of the ß subunit in sustaining antibody affinity maturation. Lastly, since diffuse large B cell lymphoma (DLBCL) cells derive from GC or post-GC B cells and rely on CK2 for their survival, we sought to investigate the consequences of CK2 inhibition on B cell signaling in DLBCL cells. In line with the observations in our murine model, CK2 inactivation leads to signaling defects in pathways that are essential for malignant B-lymphocyte activation.


Asunto(s)
Quinasa de la Caseína II , Activación de Linfocitos , Animales , Ratones , Ovinos , Quinasa de la Caseína II/genética , Transducción de Señal , Proteínas Serina-Treonina Quinasas/metabolismo , Ratones Noqueados , Receptores de Antígenos de Linfocitos B/genética , Diferenciación Celular
7.
Front Oncol ; 11: 733848, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722279

RESUMEN

Mantle Cell Lymphoma (MCL) is still an incurable B-cell malignancy characterized by poor prognosis and frequent relapses. B Cell Receptor (BCR) signaling inhibitors, in particular of the kinases BTK and PI3Kγ/δ, have demonstrated clinically meaningful anti-proliferative effects in B cell tumors. However, refractoriness to these drugs may develop, portending a dismal prognosis. Protein kinase CK1α is an emerging pro-growth enzyme in B cell malignancies. In multiple myeloma, this kinase sustains ß-catenin and AKT-dependent survival and is involved in the activation of NF-κB in B cells. In this study, we analyzed the role of CK1α on MCL cell survival and proliferation, on the regulation of BCR-related BTK, NF-κB, PI3K/AKT signaling cascades and the effects of CK1α chemical inhibition or gene silencing in association with the BTK inhibitor Ibrutinib or the PI3Kγ/δ inhibitor Duvelisib. CK1α was found highly expressed in MCL cells as compared to normal B cells. The inactivation/loss of CK1α caused MCL cell apoptosis and proliferation arrest. CK1α sustained BCR signaling, in particular the NF-κB, AKT and BTK pathways by modulating the phosphorylation of Ser 652 on CARD11, Ser 536 p65 on NF-κB, Ser 473 on AKT, Tyr 223 on BTK, as well as the protein levels. We also provided evidence that CK1α-mediated regulation of CARD11 and BTK likely implicates a physical interaction. The combination of CK1α inhibition with Ibrutinib or Duvelisib synergistically increased cytotoxicity, leading to a further decrease of the activation of BCR signaling pathways. Therefore, CK1α sustains MCL growth through the regulation of BCR-linked survival signaling cascades and protects from Ibrutinib/Duvelisib-induced apoptosis. Thus, CK1α could be considered as a rational molecular target for the treatment of MCL, in association with novel agents.

8.
Cell Death Discov ; 5: 98, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31123604

RESUMEN

Multiple myeloma (MM) is a tumor of plasma cells (PCs). Due to the intense immunoglobulin secretion, PCs are prone to endoplasmic reticulum stress and activate several stress-managing pathways, including autophagy. Indeed, autophagy deregulation is maladaptive for MM cells, resulting in cell death. CK1α, a pro-survival kinase in MM, has recently been involved as a regulator of the autophagic flux and of the transcriptional competence of the autophagy-related transcription factor FOXO3a in several cancers. In this study, we investigated the role of CK1α in autophagy in MM. To study the autophagic flux we generated clones of MM cell lines expressing the mCherry-eGFP-LC3B fusion protein. We observed that CK1 inhibition with the chemical ATP-competitive CK1 α/δ inhibitor D4476 resulted in an impaired autophagic flux, likely due to an alteration of lysosomes acidification. However, D4476 caused the accumulation of the transcription factor FOXO3a in the nucleus, and this was paralleled by the upregulation of mRNA coding for autophagic genes. Surprisingly, silencing of CK1α by RNA interference triggered the autophagic flux. However, FOXO3a did not shuttle into the nucleus and the transcription of autophagy-related FOXO3a-dependent genes was not observed. Thus, while the chemical inhibition with the dual CK1α/δ inhibitor D4476 induced cell death as a consequence of an accumulation of ineffective autophagic vesicles, on the opposite, CK1α silencing, although it also determined apoptosis, triggered a full activation of the early autophagic flux, which was then not supported by the upregulation of autophagic genes. Taken together, our results indicate that the family of CK1 kinases may profoundly influence MM cells survival also through the modulation of the autophagic pathway.

9.
Blood Cancer J ; 8(2): 20, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440639

RESUMEN

Multiple myeloma is a post-germinal center B-cell neoplasm, characterized by the proliferation of malignant bone marrow plasma cells, whose survival and proliferation is sustained by growth factors and cytokines present in the bone marrow microenvironment. Among them, IL-6 triggers the signal downstream of its receptor, leading to the activation of the JAK/STAT pathway. The atypical GTPase RhoU lays downstream of STAT3 transcription factor and could be responsible for mediating its effects on cytoskeleton dynamics. Here we demonstrate that RHOU is heterogeneously expressed in primary multiple myeloma cells and significantly modulated with disease progression. At the mRNA level, RHOU expression in myeloma patients correlated with the expression of STAT3 and its targets MIR21 and SOCS3. Also, IL-6 stimulation of human myeloma cell lines up-regulated RHOU through STAT3 activation. On the other hand, RhoU silencing led to a decrease in cell migration with the accumulation of actin stress fibers, together with a decrease in cyclin D2 expression and in cell cycle progression. Furthermore, we found that even though lenalidomide positively regulated RhoU expression leading to higher cell migration rates, it actually led to cell cycle arrest probably through a p21 dependent mechanism. Lenalidomide treatment in combination with RhoU silencing determined a loss of cytoskeletal organization inhibiting cell migration, and a further increase in the percentage of cells in a resting phase. These results unravel a role for RhoU not only in regulating the migratory features of malignant plasma cells, but also in controlling cell cycle progression.


Asunto(s)
Ciclo Celular , Movimiento Celular , Quinasas Janus/metabolismo , Mieloma Múltiple/metabolismo , Proteínas de Neoplasias/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Línea Celular Tumoral , Humanos , Quinasas Janus/genética , Mieloma Múltiple/genética , Proteínas de Neoplasias/genética , Factor de Transcripción STAT3/genética , Proteínas de Unión al GTP rho/genética
10.
J Hematol Oncol ; 6: 78, 2013 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-24283803

RESUMEN

BACKGROUND: The involvement of protein kinase CK2 in sustaining cancer cell survival could have implications also in the resistance to conventional and unconventional therapies. Moreover, CK2 role in blood tumors is rapidly emerging and this kinase has been recognized as a potential therapeutic target. Phase I clinical trials with the oral small ATP-competitive CK2 inhibitor CX-4945 are currently ongoing in solid tumors and multiple myeloma. METHODS: We have analyzed the expression of CK2 in acute myeloid leukemia and its function in cell growth and in the response to the chemotherapeutic agent daunorubicin We employed acute myeloid leukemia cell lines and primary blasts from patients grouped according to the European LeukemiaNet risk classification. Cell survival, apoptosis and sensitivity to daunorubicin were assessed by different means. p53-dependent CK2-inhibition-induced apoptosis was investigated in p53 wild-type and mutant cells. RESULTS: CK2a was found highly expressed in the majority of samples across the different acute myeloid leukemia prognostic subgroups as compared to normal CD34+ hematopoietic and bone marrow cells. Inhibition of CK2 with CX-4945, K27 or siRNAs caused a p53-dependent acute myeloid leukemia cell apoptosis. CK2 inhibition was associated with a synergistic increase of the cytotoxic effects of daunorubicin. Baseline and daunorubicin-induced STAT3 activation was hampered upon CK2 blockade. CONCLUSIONS: These results suggest that CK2 is over expressed across the different acute myeloid leukemia subsets and acts as an important regulator of acute myeloid leukemia cell survival. CK2 negative regulation of the protein levels of tumor suppressor p53 and activation of the STAT3 anti-apoptotic pathway might antagonize apoptosis and could be involved in acute myeloid leukemia cell resistance to daunorubicin.


Asunto(s)
Daunorrubicina/farmacología , Leucemia Mieloide Aguda/terapia , Naftiridinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/metabolismo , Procesos de Crecimiento Celular/efectos de los fármacos , Procesos de Crecimiento Celular/genética , Línea Celular Tumoral , Células HL-60 , Humanos , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Fenazinas , Interferencia de ARN , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA