Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Med Virol ; 95(3): e28634, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36879535

RESUMEN

Hepatitis B virus (HBV) and hepatitis D virus (HDV) coinfection confers a greater risk for accelerated liver disease progression. Full-length characterization of HDV genome is necessary to understand pathogenesis and treatment response. However, owing to its high variability and tight structure, sequencing approaches remain challenging. Herein, we present a workflow to amplify, sequence, and analyze the whole HDV genome in a single fragment. Sequencing was based on the Oxford Nanopore Technologies long-read sequencing followed by a turnkey analysis pipeline (VIRiONT, VIRal in-house ONT sequencing analysis pipeline) that we developed and make available online for free. For the first time, HDV genome was successfully amplified and full-length sequenced in a single fragment, allowing accurate subtyping from 30 clinical samples. High variability of edition, a crucial step in viral life cycle, was found among samples (from 0% to 59%). Additionally, a new subtype of HDV genotype 1 was identified. We provide a complete workflow for assessment of HDV genome at full-length quasispecies resolution overcoming genome assembly issues and helping to identify modifications throughout the whole genome. This will help a better understanding of the impact of genotype/subtype, viral dynamics, and structural variants on HDV pathogenesis and treatment response.


Asunto(s)
Coinfección , Hepatitis B , Hepatitis D , Humanos , Virus de la Hepatitis Delta/genética , Virus de la Hepatitis B/genética , Genotipo
2.
Euro Surveill ; 26(3)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33478625

RESUMEN

We report the strategy leading to the first detection of variant of concern 202012/01 (VOC) in France (21 December 2020). First, the spike (S) deletion H69-V70 (ΔH69/ΔV70), identified in certain SARS-CoV-2 variants including VOC, is screened for. This deletion is associated with a S-gene target failure (SGTF) in the three-target RT-PCR assay (TaqPath kit). Subsequently, SGTF samples are whole genome sequenced. This approach revealed mutations co-occurring with ΔH69/ΔV70 including S:N501Y in the VOC.


Asunto(s)
Secuencia de Bases , COVID-19/epidemiología , Genoma Viral , SARS-CoV-2/genética , Eliminación de Secuencia/genética , Glicoproteína de la Espiga del Coronavirus/genética , Francia/epidemiología , Humanos
3.
Viruses ; 14(5)2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35632697

RESUMEN

Human Anelloviridae is a highly prevalent viral family, including three main genera­Alphatorquevirus (Torque teno virus, TTV), Betatorquevirus (Torque teno mini virus, TTMV), and Gammatorquevirus (Torque teno midi virus, TTMDV). To date, the characterization of Anelloviridae in the respiratory tract of children with acute respiratory infection (ARI) has been poorly reported and mainly focused on TTV. We performed a metagenomic analysis of eight respiratory samples collected from children with an ARI of unknown etiology (eight samples tested negative with a multiplex PCR assay, out of the 39 samples initially selected based on negative routine diagnostic testing). A total of 19 pediatric respiratory samples that tested positive for respiratory syncytial virus (RSV, n = 13) or influenza virus (n = 6) were also sequenced. Anelloviridae reads were detected in 16/27 samples, including 6/8 negative samples, 7/13 RSV samples and 3/6 influenza samples. For samples with a detection of at least one Anelloviridae genus, TTMV represented 87.1 (66.1−99.2)% of Anelloviridae reads, while TTV and TTMDV represented 0.8 (0.0−9.6)% and 0.7 (0.0−7.1)%, respectively (p < 0.001). Our findings highlight a high prevalence of TTMV in respiratory samples of children with an ARI of unknown etiology, as well as in samples with an RSV or influenza infection. Larger studies are needed to explore the role of TTMV in childhood respiratory diseases.


Asunto(s)
Anelloviridae , Infecciones por Virus ADN , Gripe Humana , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Torque teno virus , Anelloviridae/genética , Niño , Humanos , Sistema Respiratorio , Infecciones del Sistema Respiratorio/diagnóstico , Torque teno virus/genética
4.
Viruses ; 14(8)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-36016297

RESUMEN

Whole-genome sequencing has become an essential tool for real-time genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide. The handling of raw next-generation sequencing (NGS) data is a major challenge for sequencing laboratories. We developed an easy-to-use web-based application (EPISEQ SARS-CoV-2) to analyse SARS-CoV-2 NGS data generated on common sequencing platforms using a variety of commercially available reagents. This application performs in one click a quality check, a reference-based genome assembly, and the analysis of the generated consensus sequence as to coverage of the reference genome, mutation screening and variant identification according to the up-to-date Nextstrain clade and Pango lineage. In this study, we validated the EPISEQ SARS-CoV-2 pipeline against a reference pipeline and compared the performance of NGS data generated by different sequencing protocols using EPISEQ SARS-CoV-2. We showed a strong agreement in SARS-CoV-2 clade and lineage identification (>99%) and in spike mutation detection (>99%) between EPISEQ SARS-CoV-2 and the reference pipeline. The comparison of several sequencing approaches using EPISEQ SARS-CoV-2 revealed 100% concordance in clade and lineage classification. It also uncovered reagent-related sequencing issues with a potential impact on SARS-CoV-2 mutation reporting. Altogether, EPISEQ SARS-CoV-2 allows an easy, rapid and reliable analysis of raw NGS data to support the sequencing efforts of laboratories with limited bioinformatics capacity and those willing to accelerate genomic surveillance of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación , SARS-CoV-2/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-36266052

RESUMEN

BACKGROUND AND OBJECTIVES: Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the CNS. Studies of immune dysfunction in MS have mostly focused on CD4+ Tregs, but the role of CD8+ Tregs remains largely unexplored. We previously evidenced the suppressive properties of rat and human CD8+CD45RClow/neg Tregs from healthy individuals, expressing Forkhead box P3 (FOXP3) and acting through interferon-gamma (IFN-γ), transforming growth factor beta (TGFß), and interleukin-34 (IL-34). secretions to regulate immune responses and control diseases such as transplant rejection. To better understand CD8+CD45RClow/neg Tregs contribution to MS pathology, we further investigated their phenotype, function, and transcriptome in patients with MS. METHODS: We enrolled adults with relapsing-remitting MS and age-matched and sex-matched healthy volunteers (HVs). CD8+ T cells were segregated based on low or lack of expression of CD45RC. First, the frequency in CSF and blood, phenotype, transcriptome, and function of CD8+CD45RClow and neg were investigated according to exacerbation status and secondarily, according to clinical severity based on the MS severity score (MSSS) in patients with nonexacerbating MS. We then induced active MOG35-55 EAE in C57Bl/6 mice and performed adoptive transfer of fresh and expanded CD8+CD45RCneg Tregs to assess their ability to mitigate neuroinflammation in vivo. RESULTS: Thirty-one untreated patients with relapsing-remitting MS were compared with 40 age-matched and sex-matched HVs. We demonstrated no difference of CSF CD8+CD45RClow and CD8+CD45RCneg proportions, but blood CD8+CD45RClow frequency was lower in patients with MS exacerbation when compared with that in HVs. CD8+CD45RCneg Tregs but not CD8+CD45RClow showed higher suppressive capacities in vitro in MS patients with exacerbation than in patients without acute inflammatory attack. In vitro functional assays showed a compromised suppression capacity of CD8+CD45RClow Tregs in patients with nonexacerbating severe MS, defined by the MSSS. We then characterized murine CD8+CD45RCneg Tregs and demonstrated the potential of CD45RCneg cells to migrate to the CNS and mitigate experimental autoimmune encephalomyelitis in vivo. DISCUSSION: Altogether, these results suggest a defect in the number and function of CD8+CD45RClow Tregs during MS relapse and an association of CD8+CD45RClow Tregs dysfunction with MS severity. Thus, CD8+CD45RClow/neg T cells might bring new insights into the pathophysiology and new therapeutic approaches of MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Adulto , Ratones , Ratas , Animales , Linfocitos T Reguladores/metabolismo , Linfocitos T CD8-positivos , Esclerosis Múltiple/metabolismo , Interferón gamma/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Ratones Endogámicos C57BL , Factores de Transcripción Forkhead/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
6.
Nat Commun ; 13(1): 6316, 2022 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-36274062

RESUMEN

From December 2021-February 2022, an intense and unprecedented co-circulation of SARS-CoV-2 variants with high genetic diversity raised the question of possible co-infections between variants and how to detect them. Using 11 mixes of Delta:Omicron isolates at different ratios, we evaluated the performance of 4 different sets of primers used for whole-genome sequencing and developed an unbiased bioinformatics method for the detection of co-infections involving genetically distinct SARS-CoV-2 lineages. Applied on 21,387 samples collected between December 6, 2021 to February 27, 2022 from random genomic surveillance in France, we detected 53 co-infections between different lineages. The prevalence of Delta and Omicron (BA.1) co-infections and Omicron lineages BA.1 and BA.2 co-infections were estimated at 0.18% and 0.26%, respectively. Among 6,242 hospitalized patients, the intensive care unit (ICU) admission rates were 1.64%, 4.81% and 15.38% in Omicron, Delta and Delta/Omicron patients, respectively. No BA.1/BA.2 co-infections were reported among ICU admitted patients. Among the 53 co-infected patients, a total of 21 patients (39.6%) were not vaccinated. Although SARS-CoV-2 co-infections were rare in this study, their proper detection is crucial to evaluate their clinical impact and the risk of the emergence of potential recombinants.


Asunto(s)
COVID-19 , Coinfección , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiología , Prevalencia , Coinfección/epidemiología
7.
Clin Transl Med ; 12(8): e988, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36030499

RESUMEN

BACKGROUND: Immune homeostasis requires fully functional Tregs with a stable phenotype to control autoimmunity. Although IL-34 is a cytokine first described as mainly involved in monocyte cell survival and differentiation, we recently described its expression by CD8+ Tregs in a rat model of transplantation tolerance and by activated FOXP3+ CD4+ and CD8+ Tregs in human healthy individuals. However, its role in autoimmunity and potential in human diseases remains to be determined. METHODS: We generated Il34-/- rats and using both Il34-/- rats and mice, we investigated their phenotype under inflammatory conditions. Using Il34-/- rats, we further analyzed the impact of the absence of expression of IL-34 for CD4+ Tregs suppressive function. We investigated the potential of IL-34 in human disease to prevent xenogeneic GVHD and human skin allograft rejection in immune humanized immunodeficient NSG mice. Finally, taking advantage of a biocollection, we investigated the correlation between presence of IL-34 in the serum and kidney transplant rejection. RESULTS: Here we report that the absence of expression of IL-34 in Il34-/- rats and mice leads to an unstable immune phenotype, with production of multiple auto-antibodies, exacerbated under inflammatory conditions with increased susceptibility to DSS- and TNBS-colitis in Il34-/- animals. Moreover, we revealed the striking inability of Il34-/- CD4+ Tregs to protect Il2rg-/- rats from a wasting disease induced by transfer of pathogenic cells, in contrast to Il34+/+ CD4+ Tregs. We also showed that IL-34 treatment delayed EAE in mice as well as GVHD and human skin allograft rejection in immune humanized immunodeficient NSG mice. Finally, we show that presence of IL-34 in the serum is associated with a longer rejection-free period in kidney transplanted patients. CONCLUSION: Altogether, our data emphasize on the crucial necessity of IL-34 for immune homeostasis and for CD4+ Tregs suppressive function. Our data also shows the therapeutic potential of IL-34 in human transplantation and auto-immunity. HIGHLIGHTS: -Absence of expression of IL-34 in Il34-/- rats and mice leads to an unstable immune phenotype, with a production of multiple auto-antibodies and exacerbated immune pathology under inflammatory conditions. -Il34-/- CD4+ Tregs are unable to protect Il2rg-/- rats from colitis induced by transfer of pathogenic cells. -IL-34 treatment delayed EAE in mice, as well as acute GVHD and human skin allograft rejection in immune-humanized immunodeficient NSG mice.


Asunto(s)
Colitis , Enfermedad Injerto contra Huésped , Interleucinas , Linfocitos T Reguladores , Animales , Colitis/inmunología , Factores de Transcripción Forkhead , Enfermedad Injerto contra Huésped/inmunología , Homeostasis , Humanos , Tolerancia Inmunológica , Interleucinas/deficiencia , Interleucinas/genética , Ratones , Ratas , Linfocitos T Reguladores/inmunología
8.
Emerg Microbes Infect ; 10(1): 167-177, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33399033

RESUMEN

During routine molecular surveillance of SARS-CoV-2 performed at the National Reference Center of Respiratory Viruses (Lyon, France) (n = 229 sequences collected February-April 2020), two frameshifting deletions were detected in the open reading frame 6, at the same position (27267). While a 26-nucleotide deletion variant (D26) was only found in one nasopharyngeal sample in March 2020, the 34-nucleotide deletion (D34) was found within a single geriatric hospital unit in 5/9 patients and one health care worker in April 2020. Phylogeny analysis strongly suggested a nosocomial transmission of D34, with potential fecal transmission, as also identified in a stool sample. No difference in disease severity was observed between patients hospitalized in the geriatric unit infected with WT or D34. In vitro D26 and D34 characterization revealed comparable replication kinetics with the wild-type (WT), but differential host immune responses. While interferon-stimulated genes were similarly upregulated after infection with WT and ORF6 variants, the latter specifically induced overexpression of 9 genes coding for inflammatory cytokines in the NF-kB pathway, including CCL2/MCP1, PTX3, and TNFα, for which high plasma levels have been associated with severe COVID-19. Our findings emphasize the need to monitor the occurrence of ORF6 deletions and assess their impact on the host immune response.


Asunto(s)
COVID-19/epidemiología , Infección Hospitalaria/virología , Variación Genética , Genoma Viral , SARS-CoV-2/genética , Proteínas Virales/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Bases , COVID-19/inmunología , COVID-19/virología , Infección Hospitalaria/epidemiología , Infección Hospitalaria/inmunología , Citocinas/inmunología , Femenino , Mutación del Sistema de Lectura , Francia/epidemiología , Hospitalización , Humanos , Inmunidad , Inflamación , Masculino , Filogenia , Eliminación de Secuencia , Proteínas Virales/inmunología
9.
Virus Evol ; 6(2): veaa075, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33318859

RESUMEN

Since the beginning of the COVID-19 outbreak, SARS-CoV-2 whole-genome sequencing (WGS) has been performed at unprecedented rate worldwide with the use of very diverse Next-Generation Sequencing (NGS) methods. Herein, we compare the performance of four NGS-based approaches for SARS-CoV-2 WGS. Twenty-four clinical respiratory samples with a large scale of Ct values (from 10.7 to 33.9) were sequenced with four methods. Three used Illumina sequencing: an in-house metagenomic NGS (mNGS) protocol and two newly commercialised kits including a hybridisation capture method developed by Illumina (DNA Prep with Enrichment kit and Respiratory Virus Oligo Panel, RVOP), and an amplicon sequencing method developed by Paragon Genomics (CleanPlex SARS-CoV-2 kit). We also evaluated the widely used amplicon sequencing protocol developed by ARTIC Network and combined with Oxford Nanopore Technologies (ONT) sequencing. All four methods yielded near-complete genomes (>99%) for high viral loads samples (n = 8), with mNGS and RVOP producing the most complete genomes. For mid viral loads (Ct 20-25), amplicon-based enrichment methods led to genome coverage >99 per cent for all samples while 1/8 sample sequenced with RVOP and 2/8 samples sequenced with mNGS had a genome coverage below 99 per cent. For low viral loads (Ct ≥25), amplicon-based enrichment methods were the most sensitive techniques. All methods were highly concordant in terms of identity in complete consensus sequence. Just one mismatch in three samples was observed in CleanPlex vs the other methods, due to the dedicated bioinformatics pipeline setting a high threshold to call SNP compared to reference sequence. Importantly, all methods correctly identified a newly observed 34nt-deletion in ORF6 but required specific bioinformatic validation for RVOP. Finally, as a major warning for targeted techniques, a loss of coverage in any given region of the genome should alert to a potential rearrangement or a SNP in primer-annealing or probe-hybridizing regions and would require further validation using unbiased metagenomic sequencing.

10.
Microorganisms ; 8(10)2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036303

RESUMEN

Viral metagenomics next-generation sequencing (mNGS) is increasingly being used to characterize the human virome. The impact of viral nucleic extraction on virome profiling has been poorly studied. Here, we aimed to compare the sensitivity and sample and reagent contamination of three extraction methods used for viral mNGS: two automated platforms (eMAG; MagNA Pure 24, MP24) and the manual QIAamp Viral RNA Mini Kit (QIAamp). Clinical respiratory samples (positive for Respiratory Syncytial Virus or Herpes Simplex Virus), one mock sample (including five viruses isolated from respiratory samples), and a no-template control (NTC) were extracted and processed through an mNGS workflow. QIAamp yielded a lower proportion of viral reads for both clinical and mock samples. The sample cross-contamination was higher when using MP24, with up to 36.09% of the viral reads mapping to mock viruses in the NTC (vs. 1.53% and 1.45% for eMAG and QIAamp, respectively). The highest number of viral reads mapping to bacteriophages in the NTC was found with QIAamp, suggesting reagent contamination. Our results highlight the importance of the extraction method choice for accurate virome characterization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA