Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biol Chem ; 291(45): 23769-23778, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27662906

RESUMEN

The mitochondrial electron transport chain consists of individual protein complexes arranged into large macromolecular structures, termed respiratory chain supercomplexes or respirasomes. In the yeast Saccharomyces cerevisiae, respiratory chain supercomplexes form by association of the bc1 complex with the cytochrome c oxidase. Formation and maintenance of these assemblies are promoted by specific respiratory supercomplex factors, the Rcf proteins. For these proteins a regulatory function in bridging the electron transfer within supercomplexes has been proposed. Here we report on the maturation of Rcf2 into an N- and C-terminal peptide. We show that the previously uncharacterized Rcf3 (YBR255c-A) is a homolog of the N-terminal Rcf2 peptide, whereas Rcf1 is homologous to the C-terminal portion. Both Rcf3 and the C-terminal fragment of Rcf2 associate with monomeric cytochrome c oxidase and respiratory chain supercomplexes. A lack of Rcf2 and Rcf3 increases oxygen flux through the respiratory chain by up-regulation of the cytochrome c oxidase activity. A double gene deletion of RCF2 and RCF3 affects cellular survival under non-fermentable growth conditions, suggesting an overlapping role for both proteins in the regulation of the OXPHOS activity. Furthermore, our data suggest an association of all three Rcf proteins with the bc1 complex in the absence of a functional cytochrome c oxidase and identify a supercomplex independent interaction network of the Rcf proteins.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte de Electrón , Complejo IV de Transporte de Electrones/genética , Eliminación de Gen , Mutación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Biochim Biophys Acta ; 1863(7 Pt A): 1624-32, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27083394

RESUMEN

The cytochrome c oxidase (COX) is the terminal enzyme of the respiratory chain. The complex accepts electrons from cytochrome c and passes them onto molecular oxygen. This process contributes to energy capture in the form of a membrane potential across the inner membrane. The enzyme complex assembles in a stepwise process from the three mitochondria-encoded core subunits Cox1, Cox2 and Cox3, which associate with nuclear-encoded subunits and cofactors. In the yeast Saccharomyces cerevisiae, the cytochrome c oxidase associates with the bc1-complex into supercomplexes, allowing efficient energy transduction. Here we report on Cox26 as a protein found in respiratory chain supercomplexes containing cytochrome c oxidase. Our analyses reveal Cox26 as a novel stoichiometric structural subunit of the cytochrome c oxidase. A loss of Cox26 affects cytochrome c oxidase activity and respirasome organization.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/enzimología , Membranas Mitocondriales/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/aislamiento & purificación , Potencial de la Membrana Mitocondrial , Consumo de Oxígeno , Subunidades de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Factores de Tiempo
3.
Biochim Biophys Acta Mol Cell Res ; 1868(12): 119133, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34450214

RESUMEN

The respiratory chain, embedded in the inner mitochondrial membrane, is organized as a network of individual complexes, as well as large supercomplex structures. In the yeast S. cerevisiae, these supercomplexes consist of a dimeric cytochrome bc1-complex adjoined by one or two copies of cytochrome c oxidase. The formation of these complexes is a dynamic process and is regulated by various factors in order to adapt to environmental and metabolic changes. These adaptions occur at the level of enzyme regulation, complex assembly, as well as altered nuclear and mitochondrial transcription and translation. Members of the Rcf protein family (Rcf1, Rcf2 and Rcf3) are required for respiratory complex biogenesis and act mainly by regulating the assembly and enzyme activity of complex IV within supercomplexes. Rcf1 functions in the assembly process via the COX3 module, whereas Rcf2 and Rcf3 are responsible for enzymatic regulation. In this study, we have extended this knowledge to show that Rcf2 and Rcf3 can also associate with newly synthesized mitochondrial encoded proteins, such as Cox3, and therefore contribute to complex IV assembly. Since the Rcf proteins have overlapping regions of sequence similarities, we engineered novel fusion proteins of Rcf1 and Rcf3, with parts of Rcf2, to probe which of the Rcf protein domains can be attributed to their functions. The fusion proteins could compensate for the individual phenotypes of the complexIV assembly defect and the lack of complex IV regulation. Finally, the role of Rcf proteins for defined species of respiratory chain complexes in a hypoxic model was investigated, uncovering a unique association of Rcf2 with the hypoxic III2IV supercomplex. We therefore suggest an involvement of Rcf2 for adaption of the respiratory chain to altering oxygen levels.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Fosforilación Oxidativa , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo IV de Transporte de Electrones/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
4.
FEBS Lett ; 588(17): 2985-92, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-24928273

RESUMEN

The mitochondrial respiratory chain is essential for the conversion of energy derived from the oxidation of metabolites into the membrane potential, which drives the synthesis of ATP. The electron transporting complexes bc1 complex and the cytochrome c oxidase assemble into large supercomplexes, allowing efficient energy transduction. Currently, we have only limited information about what determines the structure of the supercomplex. Here, we characterize Aim24 in baker's yeast as a protein, which is integrated in the mitochondrial inner membrane and is required for the structural integrity of the supercomplex. Deletion of AIM24 strongly affects activity of the respiratory chain and induces a growth defect on non-fermentable medium. Our data indicate that Aim24 has a function in stabilizing the respiratory chain supercomplexes.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Secuencia de Aminoácidos , Medios de Cultivo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Estabilidad Proteica , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
5.
J Cell Biol ; 199(1): 137-50, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23007649

RESUMEN

Respiratory chain complexes in mitochondria are assembled from subunits derived from two genetic systems. For example, the bc(1) complex consists of nine nuclear encoded subunits and the mitochondrially encoded subunit cytochrome b. We recently showed that the Cbp3-Cbp6 complex has a dual function for biogenesis of cytochrome b: it is both required for efficient synthesis of cytochrome b and for protection of the newly synthesized protein from proteolysis. Here, we report that Cbp3-Cbp6 also coordinates cytochrome b synthesis with bc(1) complex assembly. We show that newly synthesized cytochrome b assembled through a series of four assembly intermediates. Blocking assembly at early and intermediate steps resulted in sequestration of Cbp3-Cbp6 in a cytochrome b-containing complex, thereby making Cbp3-Cbp6 unavailable for cytochrome b synthesis and thus reducing overall cytochrome b levels. This feedback loop regulates protein synthesis at the inner mitochondrial membrane by directly monitoring the efficiency of bc(1) complex assembly.


Asunto(s)
Grupo Citocromo b/biosíntesis , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Grupo Citocromo b/metabolismo , Proteínas de la Membrana/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Modelos Biológicos , Chaperonas Moleculares/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
J Cell Biol ; 193(6): 1101-14, 2011 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-21670217

RESUMEN

Mitochondria contain their own genetic system to express a small number of hydrophobic polypeptides, including cytochrome b, an essential subunit of the bc(1) complex of the respiratory chain. In this paper, we show in yeast that Cbp3, a bc(1) complex assembly factor, and Cbp6, a regulator of cytochrome b translation, form a complex that associates with the polypeptide tunnel exit of mitochondrial ribosomes and that exhibits two important functions in the biogenesis of cytochrome b. On the one hand, the interaction of Cbp3 and Cbp6 with mitochondrial ribosomes is necessary for efficient translation of cytochrome b transcript [corrected]. On the other hand, the Cbp3-Cbp6 complex interacts directly with newly synthesized cytochrome b in an assembly intermediate that is not ribosome bound and that contains the assembly factor Cbp4. Our results suggest that synthesis of cytochrome b occurs preferentially on those ribosomes that have the Cbp3-Cbp6 complex bound to their tunnel exit, an arrangement that may ensure tight coordination of cytochrome b synthesis and assembly.


Asunto(s)
Citocromos b/biosíntesis , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transaminasas/genética , Transaminasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA