Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Plant Microbe Interact ; 37(3): 250-263, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38416124

RESUMEN

Fungal pathogens deploy a set of molecules (proteins, specialized metabolites, and sRNAs), so-called effectors, to aid the infection process. In comparison to other plant pathogens, smut fungi have small genomes and secretomes of 20 Mb and around 500 proteins, respectively. Previous comparative genomic studies have shown that many secreted effector proteins without known domains, i.e., novel, are conserved only in the Ustilaginaceae family. By analyzing the secretomes of 11 species within Ustilaginaceae, we identified 53 core homologous groups commonly present in this lineage. By collecting existing mutants and generating additional ones, we gathered 44 Ustilago maydis strains lacking single core effectors as well as 9 strains containing multiple deletions of core effector gene families. Pathogenicity assays revealed that 20 of these 53 mutant strains were affected in virulence. Among the 33 mutants that had no obvious phenotypic changes, 13 carried additional, sequence-divergent, structurally similar paralogs. We report a virulence contribution of seven previously uncharacterized single core effectors and of one effector family. Our results help to prioritize effectors for understanding U. maydis virulence and provide genetic resources for further characterization. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Basidiomycota , Ustilaginales , Ustilago , Virulencia/genética , Ustilago/genética , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Zea mays/microbiología
2.
New Phytol ; 231(1): 416-431, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33843063

RESUMEN

The biotrophic basidiomycete fungus Ustilago maydis causes smut disease in maize. Hallmarks of the disease are characteristic large tumors in which dark pigmented spores are formed. Here, we functionally characterized a novel core effector lep1 (late effector protein 1) which is highly expressed during tumor formation and contributes to virulence. We characterize lep1 mutants, localize the protein, determine phenotypic consequences upon deletion as well as constitutive expression, and analyze relationships with the repellent protein Rep1 and hydrophobins. In tumors, lep1 mutants show attenuated hyphal aggregation, fail to undergo massive late proliferation and produce only a few spores. Upon constitutive expression, cell aggregation is induced and the surface of filamentous colonies displays enhanced hydrophobicity. Lep1 is bound to the cell wall of biotrophic hyphae and associates with Rep1 when constitutively expressed in hyphae. We conclude that Lep1 acts as a novel kind of cell adhesin which functions together with other surface-active proteins to allow proliferation of diploid hyphae as well as for induction of the morphological changes associated with spore formation.


Asunto(s)
Hifa , Ustilago , Basidiomycota , Proteínas Fúngicas/genética , Enfermedades de las Plantas , Tumores de Planta , Ustilago/genética , Zea mays
3.
New Phytol ; 227(1): 185-199, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32112567

RESUMEN

The biotrophic fungus Ustilago maydis causes the smut disease of maize. The interaction with its host and induction of characteristic tumors are governed largely by secreted effectors whose function is mostly unknown. To identify effectors with a prominent role in virulence, we used RNA sequencing and found that the gene sta1 is upregulated during early stages of infection. We characterized Sta1 by comparative genomics, reverse genetics, protein localization, stress assays, and microscopy. sta1 mutants show a dramatic reduction of virulence and show altered colonization of tissue neighboring the vascular bundles. Functional orthologues of Sta1 are found in related smut pathogens infecting monocot and dicot plants. Sta1 is secreted by budding cells but is attached to the cell wall of filamentous hyphae. Upon constitutive expression of Sta1, fungal filaments become susceptible to Congo red, ß-glucanase, and chitinase, suggesting that Sta1 alters the structure of the fungal cell wall. Constitutive or delayed expression of sta1 during plant colonization negatively impacts on virulence. Our results suggest that Sta1 is a novel kind of effector, which needs to modify the hyphal cell wall to allow hyphae to be accommodated in tissue next to the vascular bundles.


Asunto(s)
Enfermedades de las Plantas , Ustilago , Basidiomycota , Pared Celular , Proteínas Fúngicas/genética , Ustilago/genética , Virulencia , Zea mays
4.
PLoS Pathog ; 10(7): e1004272, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25033195

RESUMEN

Infection-related development of phytopathogenic fungi is initiated by sensing and responding to plant surface cues. This response can result in the formation of specialized infection structures, so-called appressoria. To unravel the program inducing filaments and appressoria in the biotrophic smut fungus Ustilago maydis, we exposed cells to a hydrophobic surface and the cutin monomer 16-hydroxy hexadecanoic acid. Genome-wide transcriptional profiling at the pre-penetration stage documented dramatic transcriptional changes in almost 20% of the genes. Comparisons with the U. maydis sho1 msb2 double mutant, lacking two putative sensors for plant surface cues, revealed that these plasma membrane receptors regulate a small subset of the surface cue-induced genes comprising mainly secreted proteins including potential plant cell wall degrading enzymes. Targeted gene deletion analysis ascribed a role to up-regulated GH51 and GH62 arabinofuranosidases during plant penetration. Among the sho1/msb2-dependently expressed genes were several secreted effectors that are essential for virulence. Our data also demonstrate specific effects on two transcription factors that redirect the transcriptional regulatory network towards appressorium formation and plant penetration. This shows that plant surface cues prime U. maydis for biotrophic development.


Asunto(s)
Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica/fisiología , Enfermedades de las Plantas/microbiología , Transcriptoma/fisiología , Ustilago , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Estudio de Asociación del Genoma Completo , Lípidos de la Membrana/genética , Lípidos de la Membrana/metabolismo , Propiedades de Superficie , Ustilago/genética , Ustilago/metabolismo
5.
Bio Protoc ; 13(13): e4709, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37449040

RESUMEN

The easyPACId (easy Promoter Activation and Compound Identification) approach is focused on the targeted activation of natural product biosynthetic gene clusters (BGCs) encoding non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKS), NRPS-PKS hybrids, or other BGC classes. It was applied to entomopathogenic bacteria of the genera Xenorhabdus and Photorhabdus by exchanging the natural promoter of desired BGCs against the L-arabinose inducible PBAD promoter in ∆hfq mutants of the respective strains. The crude (culture) extracts of the cultivated easyPACId mutants are enriched with the single compound or compound class and can be tested directly against various target organisms without further purification of the produced natural products. Furthermore, isolation and identification of compounds from these mutants is simplified due to the reduced background in the ∆hfq strains. The approach avoids problems often encountered in heterologous expression hosts, chemical synthesis, or tedious extraction of desired compounds from wild-type crude extracts. This protocol describes easyPACId for Xenorhabdus and Photorhabdus, but it was also successfully adapted to Pseudomonas entomophila and might be suitable for other proteobacteria that carry hfq.

6.
Nature ; 444(7115): 97-101, 2006 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-17080091

RESUMEN

Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no 'true' virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens.


Asunto(s)
Genoma Fúngico/genética , Ustilago/genética , Ustilago/patogenicidad , Zea mays/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Genómica , Familia de Multigenes/genética , Ustilago/crecimiento & desarrollo , Virulencia/genética
7.
Genome Biol Evol ; 13(5)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33837781

RESUMEN

The tight interaction between pathogens and their hosts results in reciprocal selective forces that impact the genetic diversity of the interacting species. The footprints of this selection differ between pathosystems because of distinct life-history traits, demographic histories, or genome architectures. Here, we studied the genome-wide patterns of genetic diversity of 22 isolates of the causative agent of the corn smut disease, Ustilago maydis, originating from five locations in Mexico, the presumed center of origin of this species. In this species, many genes encoding secreted effector proteins reside in so-called virulence clusters in the genome, an arrangement that is so far not found in other filamentous plant pathogens. Using a combination of population genomic statistical analyses, we assessed the geographical, historical, and genome-wide variation of genetic diversity in this fungal pathogen. We report evidence of two partially admixed subpopulations that are only loosely associated with geographic origin. Using the multiple sequentially Markov coalescent model, we inferred the demographic history of the two pathogen subpopulations over the last 0.5 Myr. We show that both populations experienced a recent strong bottleneck starting around 10,000 years ago, coinciding with the assumed time of maize domestication. Although the genome average genetic diversity is low compared with other fungal pathogens, we estimated that the rate of nonsynonymous adaptive substitutions is three times higher in genes located within virulence clusters compared with nonclustered genes, including nonclustered effector genes. These results highlight the role that these singular genomic regions play in the evolution of this pathogen.


Asunto(s)
Basidiomycota/genética , Basidiomycota/clasificación , Basidiomycota/patogenicidad , Evolución Biológica , Variación Genética , Factor de Apareamiento/genética , México , Virulencia , Zea mays/microbiología
8.
Nat Microbiol ; 4(2): 251-257, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30510169

RESUMEN

Plant-pathogenic fungi hijack their hosts by secreting effector proteins. Effectors serve to suppress plant immune responses and modulate the host metabolism to benefit the pathogen. Smut fungi are biotrophic pathogens that also parasitize important cereals, including maize1. Symptom development is usually restricted to the plant inflorescences. Ustilago maydis is an exception in its ability to cause tumours in both inflorescences and leaves of maize, and in inducing anthocyanin biosynthesis through the secreted Tin2 effector2,3. How the unique lifestyle of U. maydis has evolved remains to be elucidated. Here we show that Tin2 in U. maydis has been neofunctionalized. We functionally compared Tin2 effectors of U. maydis and the related smut Sporisorium reilianum, which results in symptoms only in the inflorescences of maize and fails to induce anthocyanin. We show that Tin2 effectors from both fungi target distinct paralogues of a maize protein kinase, leading to stabilization and inhibition, respectively. An ancestral Tin2 effector functionally replaced the virulence function of S. reilianum Tin2 but failed to induce anthocyanin, and was unable to substitute for Tin2 in U. maydis. This shows that Tin2 in U. maydis has acquired a specialized function, probably connected to the distinct pathogenic lifestyle of this fungus.


Asunto(s)
Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Ustilago/patogenicidad , Factores de Virulencia/metabolismo , Antocianinas/biosíntesis , Flores/metabolismo , Flores/microbiología , Proteínas Fúngicas/genética , Silenciador del Gen , Interacciones Huésped-Patógeno , Mutación , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ustilaginales/genética , Ustilaginales/metabolismo , Ustilaginales/patogenicidad , Ustilaginales/fisiología , Ustilago/genética , Ustilago/metabolismo , Ustilago/fisiología , Virulencia , Factores de Virulencia/genética , Zea mays
9.
Science ; 330(6010): 1546-8, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21148393

RESUMEN

Biotrophic pathogens, such as the related maize pathogenic fungi Ustilago maydis and Sporisorium reilianum, establish an intimate relationship with their hosts by secreting protein effectors. Because secreted effectors interacting with plant proteins should rapidly evolve, we identified variable genomic regions by sequencing the genome of S. reilianum and comparing it with the U. maydis genome. We detected 43 regions of low sequence conservation in otherwise well-conserved syntenic genomes. These regions primarily encode secreted effectors and include previously identified virulence clusters. By deletion analysis in U. maydis, we demonstrate a role in virulence for four previously unknown diversity regions. This highlights the power of comparative genomics of closely related species for identification of virulence determinants.


Asunto(s)
Evolución Molecular , Genoma Fúngico , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/microbiología , Ustilaginales/patogenicidad , Factores de Virulencia/genética , Zea mays/microbiología , Secuencia Conservada , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Familia de Multigenes , Interferencia de ARN , Análisis de Secuencia de ADN , Sintenía , Ustilaginales/genética , Ustilago/genética , Ustilago/patogenicidad , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA