Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1631, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238397

RESUMEN

The resident human skin microbiome is responsible for the production of most of the human scents that are attractive to mosquitoes. Hence, engineering the human skin microbiome to synthesize less of mosquito attractants or produce repellents could potentially reduce bites and prevent the transmission of deadly mosquito-borne pathogens. In order to further characterize the human skin volatilome, we quantified the major volatiles of 39 strains of skin commensals (Staphylococci and Corynebacterium). Importantly, to validate the behavioral activity of these volatiles, we first assessed landing behavior triggered by human skin volatiles. We demonstrated that landing behavior is gated by the presence of carbon dioxide and L-(+)-lactic acid. This is similar to the combinatorial coding triggering mosquito short range attraction. Repellency behavior to selected skin volatiles and terpenes was tested in the presence of carbon dioxide and L-(+)-lactic acid. In a 2-choice landing behavior context, the skin volatiles 2- and 3-methyl butyric acids reduced mosquito landing by 62.0-81.6% and 87.1-99.6%, respectively. Similarly, the terpene geraniol was capable of reducing mosquito landing behavior by 74.9%. We also tested the potential repellency effects of terpenes in mosquitoes at short-range using a 4-port olfactometer. In these assays, geraniol reduced mosquito attraction (69-78%) to a mixture of key human kairomones carbon dioxide, L-(+)-lactic acid, and ammonia. These findings demonstrate that carbon dioxide and L-(+)-lactic acid change the valence of other skin volatiles towards mosquito landing behavior. Moreover, this study offers candidate odorants to be targeted in a novel strategy to reduce attractants or produce repellents by the human skin microbiota that may curtail mosquito bites, and subsequent mosquito-borne disease.


Asunto(s)
Monoterpenos Acíclicos , Repelentes de Insectos , Microbiota , Animales , Humanos , Odorantes , Dióxido de Carbono , Repelentes de Insectos/farmacología , Ácido Láctico , Terpenos , Control de Mosquitos
2.
PNAS Nexus ; 3(7): pgae267, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39081786

RESUMEN

The skin microbiome plays a pivotal role in the production of attractive cues detected by mosquitoes. Here, we leveraged recent advances in genetic engineering to significantly reduce the production of L-(+)-lactic acid as a strategy to reduce mosquito attraction to the highly prominent skin commensals Staphylococcus epidermidis and Corynebacterium amycolatum. Engraftment of these engineered bacteria onto the skin of mice reduced mosquito attraction and feeding for up to 11 uninterrupted days, which is considerably longer than the several hours of protection conferred by the leading chemical repellent N,N-diethyl-meta-toluamide. Taken together, our findings demonstrate engineering the skin microbiome to reduce attractive volatiles represents an innovative untapped strategy to reduce vector attraction, preventing bites, and pathogen transmission. These findings set the stage for new classes of long-lasting microbiome-based repellent products.

3.
bioRxiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38187765

RESUMEN

The skin microbiome plays a pivotal role in the production of attractive cues detected by mosquitoes. Here we leveraged recent advances in genetic engineering to significantly reduce the production of L-(+)-lactic acid as a strategy to reduce mosquito attraction to the highly prominent skin commensals Staphylococcus epidermidis and Corynebacterium amycolatum . Engraftment of these engineered bacteria onto the skin of mice reduced mosquito attraction and feeding for up to 11 uninterrupted days, which is considerably longer than the several hours of protection conferred by the leading chemical repellent DEET. Taken together, our findings demonstrate engineering the skin microbiome to reduce attractive volatiles represents an innovative untapped strategy to reduce vector attraction, preventing bites, and pathogen transmission setting the stage for new classes of long-lasting microbiome-based repellent products. One-Sentence Summary: Modified microbes make skin less attractive to mosquitoes.

5.
Cold Spring Harb Protoc ; 2024(3): pdb.corr108539, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38233223
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA