Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Med Genet ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548315

RESUMEN

Schaaf-Yang syndrome (SYS) is an ultra-rare neurodevelopmental disorder caused by truncating mutations in MAGEL2 Heterologous expression of wild-type (WT) or a truncated (p.Gln638*) C-terminal HA-tagged MAGEL2 revealed a shift from a primarily cytoplasmic to a more nuclear localisation for the truncated protein variant. We now extend this analysis to six additional SYS mutations on a N-terminal FLAG-tagged MAGEL2. Our results replicate and extend our previous findings, showing that all the truncated MAGEL2 proteins consistently display a predominant nuclear localisation, irrespective of the C-terminal or N-terminal position and the chemistry of the tag. The variants associated with arthrogryposis multiplex congenita display a more pronounced nuclear retention phenotype, suggesting a correlation between clinical severity and the degree of nuclear mislocalisation. These results point to a neomorphic effect of truncated MAGEL2, which might contribute to the pathogenesis of SYS.

2.
J Med Genet ; 60(4): 406-415, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36243518

RESUMEN

BACKGROUND: Schaaf-Yang syndrome (SYS) is caused by truncating mutations in MAGEL2, mapping to the Prader-Willi region (15q11-q13), with an observed phenotype partially overlapping that of Prader-Willi syndrome. MAGEL2 plays a role in retrograde transport and protein recycling regulation. Our aim is to contribute to the characterisation of SYS pathophysiology at clinical, genetic and molecular levels. METHODS: We performed an extensive phenotypic and mutational revision of previously reported patients with SYS. We analysed the secretion levels of amyloid-ß 1-40 peptide (Aß1-40) and performed targeted metabolomic and transcriptomic profiles in fibroblasts of patients with SYS (n=7) compared with controls (n=11). We also transfected cell lines with vectors encoding wild-type (WT) or mutated MAGEL2 to assess stability and subcellular localisation of the truncated protein. RESULTS: Functional studies show significantly decreased levels of secreted Aß1-40 and intracellular glutamine in SYS fibroblasts compared with WT. We also identified 132 differentially expressed genes, including non-coding RNAs (ncRNAs) such as HOTAIR, and many of them related to developmental processes and mitotic mechanisms. The truncated form of MAGEL2 displayed a stability similar to the WT but it was significantly switched to the nucleus, compared with a mainly cytoplasmic distribution of the WT MAGEL2. Based on the updated knowledge, we offer guidelines for the clinical management of patients with SYS. CONCLUSION: A truncated MAGEL2 protein is stable and localises mainly in the nucleus, where it might exert a pathogenic neomorphic effect. Aß1-40 secretion levels and HOTAIR mRNA levels might be promising biomarkers for SYS. Our findings may improve SYS understanding and clinical management.


Asunto(s)
Síndrome de Prader-Willi , Humanos , Síndrome de Prader-Willi/genética , Fenotipo , Mutación , Proteínas/genética , Biomarcadores
3.
J Clin Lab Anal ; 37(23-24): e24982, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38115685

RESUMEN

BACKGROUND: Previous investigations pointed out a role for antigen stimulation in Sezary syndrome (SS). High-throughput sequencing of the T cell receptor (TR) offers several applications beyond diagnostic purposes, including the study of T cell pathogenesis. METHODS: We performed high-throughput RNA sequencing of the TR alpha (TRA) and beta (TRB) genes focusing on the complementarity-determining region 3 (CDR3) in 11 SS and one erythrodermic mycosis fungoides (MF) patients. Five psoriasis patients were employed as controls. Peripheral blood CD4+ cells were isolated and RNA sequenced (HiSeq2500). High-resolution HLA typing was performed in neoplastic patients. RESULTS: Highly expanded predominant TRA and TRB CDR3 were only found in SS patients (median frequency: 94.4% and 93.7%). No remarkable CDR3 expansions were observed in psoriasis patients (median frequency of predominant TRA and TRB CDR3: 0.87% and 0.69%, p < 0.001 compared to SS). CDR3 almost identical to the predominant were identified within each SS patient and were exponentially correlated with frequencies of the predominant CDR3 (R2 = 0.918, p < 0.001). Forty-six different CDR3 were shared between SS patients displaying HLA similarities, including predominant TRA and TRB CDR3 in one patient that were found in other three patients. Additionally, 351 antigen matches were detected (Cytomegalovirus, Epstein-Barr, Influenza virus, and self-antigens), and the predominant CDR3 of two different SS patients matched CDR3 with specificity for Influenza and Epstein-Barr viruses. CONCLUSIONS: Besides detecting clonality, these findings shed light on the nature of SS-related antigens, pointing to RNA sequencing as a useful tool for simultaneous clonality and biological analysis in SS.


Asunto(s)
Psoriasis , Síndrome de Sézary , Neoplasias Cutáneas , Humanos , Síndrome de Sézary/genética , Síndrome de Sézary/patología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T/genética , Regiones Determinantes de Complementariedad/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias Cutáneas/genética
4.
PLoS Comput Biol ; 17(2): e1007784, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33606672

RESUMEN

Rare variants are thought to play an important role in the etiology of complex diseases and may explain a significant fraction of the missing heritability in genetic disease studies. Next-generation sequencing facilitates the association of rare variants in coding or regulatory regions with complex diseases in large cohorts at genome-wide scale. However, rare variant association studies (RVAS) still lack power when cohorts are small to medium-sized and if genetic variation explains a small fraction of phenotypic variance. Here we present a novel Bayesian rare variant Association Test using Integrated Nested Laplace Approximation (BATI). Unlike existing RVAS tests, BATI allows integration of individual or variant-specific features as covariates, while efficiently performing inference based on full model estimation. We demonstrate that BATI outperforms established RVAS methods on realistic, semi-synthetic whole-exome sequencing cohorts, especially when using meaningful biological context, such as functional annotation. We show that BATI achieves power above 70% in scenarios in which competing tests fail to identify risk genes, e.g. when risk variants in sum explain less than 0.5% of phenotypic variance. We have integrated BATI, together with five existing RVAS tests in the 'Rare Variant Genome Wide Association Study' (rvGWAS) framework for data analyzed by whole-exome or whole genome sequencing. rvGWAS supports rare variant association for genes or any other biological unit such as promoters, while allowing the analysis of essential functionalities like quality control or filtering. Applying rvGWAS to a Chronic Lymphocytic Leukemia study we identified eight candidate predisposition genes, including EHMT2 and COPS7A.


Asunto(s)
Variación Genética , Estudio de Asociación del Genoma Completo/métodos , Teorema de Bayes , Benchmarking , Neoplasias de la Mama/genética , Complejo del Señalosoma COP9/genética , Estudios de Casos y Controles , Estudios de Cohortes , Biología Computacional , Simulación por Computador , Interpretación Estadística de Datos , Bases de Datos Genéticas , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/normas , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Antígenos de Histocompatibilidad/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Control de Calidad , Factores de Riesgo , Factores de Transcripción/genética , Secuenciación del Exoma/métodos , Secuenciación del Exoma/normas , Secuenciación del Exoma/estadística & datos numéricos , Secuenciación Completa del Genoma/métodos , Secuenciación Completa del Genoma/estadística & datos numéricos
5.
J Cell Mol Med ; 25(16): 8047-8061, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34165249

RESUMEN

Irritable bowel syndrome (IBS) is a gut-brain disorder in which symptoms are shaped by serotonin acting centrally and peripherally. The serotonin transporter gene SLC6A4 has been implicated in IBS pathophysiology, but the underlying genetic mechanisms remain unclear. We sequenced the alternative P2 promoter driving intestinal SLC6A4 expression and identified single nucleotide polymorphisms (SNPs) that were associated with IBS in a discovery sample. Identified SNPs built different haplotypes, and the tagging SNP rs2020938 seems to associate with constipation-predominant IBS (IBS-C) in females. rs2020938 validation was performed in 1978 additional IBS patients and 6,038 controls from eight countries. Meta-analysis on data from 2,175 IBS patients and 6,128 controls confirmed the association with female IBS-C. Expression analyses revealed that the P2 promoter drives SLC6A4 expression primarily in the small intestine. Gene reporter assays showed a functional impact of SNPs in the P2 region. In silico analysis of the polymorphic promoter indicated differential expression regulation. Further follow-up revealed that the major allele of the tagging SNP rs2020938 correlates with differential SLC6A4 expression in the jejunum and with stool consistency, indicating functional relevance. Our data consolidate rs2020938 as a functional SNP associated with IBS-C risk in females, underlining the relevance of SLC6A4 in IBS pathogenesis.


Asunto(s)
Biomarcadores/metabolismo , Síndrome del Colon Irritable/patología , Fenotipo , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Serotonina/metabolismo , Femenino , Haplotipos , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Síndrome del Colon Irritable/etiología , Síndrome del Colon Irritable/metabolismo
6.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34299011

RESUMEN

Osteoporosis is the most common metabolic bone disorder and nitrogen-containing bisphosphonates (BP) are a first line treatment for it. Yet, atypical femoral fractures (AFF), a rare adverse effect, may appear after prolonged BP administration. Given the low incidence of AFF, an underlying genetic cause that increases the susceptibility to these fractures is suspected. Previous studies uncovered rare CYP1A1 mutations in osteoporosis patients who suffered AFF after long-term BP treatment. CYP1A1 is involved in drug metabolism and steroid catabolism, making it an interesting candidate. However, a functional validation for the AFF-associated CYP1A1 mutations was lacking. Here we tested the enzymatic activity of four such CYP1A1 variants, by transfecting them into Saos-2 cells. We also tested the effect of commonly used BPs on the enzymatic activity of the CYP1A1 forms. We demonstrated that the p.Arg98Trp and p.Arg136His CYP1A1 variants have a significant negative effect on enzymatic activity. Moreover, all the BP treatments decreased CYP1A1 activity, although no specific interaction with CYP1A1 variants was found. Our results provide functional support to the hypothesis that an additive effect between CYP1A1 heterozygous mutations p.Arg98Trp and p.Arg136His, other rare mutations and long-term BP exposure might generate susceptibility to AFF.


Asunto(s)
Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Fracturas del Fémur/genética , Fracturas del Fémur/metabolismo , Secuencia de Aminoácidos , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/genética , Citocromo P-450 CYP1A1/química , Difosfonatos/uso terapéutico , Fracturas del Fémur/enzimología , Humanos , Incidencia , Mutagénesis Sitio-Dirigida , Mutación Missense , Filogenia , Alineación de Secuencia
7.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557041

RESUMEN

We present a Turkish family with two cousins (OC15 and OC15b) affected with syndromic developmental delay, microcephaly, and trigonocephaly but with some phenotypic traits distinct between them. OC15 showed asymmetrical skeletal defects and syndactyly, while OC15b presented with a more severe microcephaly and semilobal holoprosencephaly. All four progenitors were related and OC15 parents were consanguineous. Whole Exome Sequencing (WES) analysis was performed on patient OC15 as a singleton and on the OC15b trio. Selected variants were validated by Sanger sequencing. We did not identify any shared variant that could be associated with the disease. Instead, each patient presented a de novo heterozygous variant in a different gene. OC15 carried a nonsense mutation (p.Arg95*) in PORCN, which is a gene responsible for Goltz-Gorlin syndrome, while OC15b carried an indel mutation in ZIC2 leading to the substitution of three residues by a proline (p.His404_Ser406delinsPro). Autosomal dominant mutations in ZIC2 have been associated with holoprosencephaly 5. Both variants are absent in the general population and are predicted to be pathogenic. These two de novo heterozygous variants identified in the two patients seem to explain the major phenotypic alterations of each particular case, instead of a homozygous variant that would be expected by the underlying consanguinity.


Asunto(s)
Aciltransferasas/genética , Consanguinidad , Proteínas de la Membrana/genética , Mutación , Proteínas Nucleares/genética , Factores de Transcripción/genética , Niño , Preescolar , Análisis Mutacional de ADN , Facies , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Linaje , Fenotipo , Radiografía , Turquía
8.
J Clin Immunol ; 40(7): 987-1000, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32671674

RESUMEN

Autoinflammatory diseases (AIDs) were first described as clinical disorders characterized by recurrent episodes of seemingly unprovoked sterile inflammation. In the past few years, the identification of novel AIDs expanded their phenotypes toward more complex clinical pictures associating vasculopathy, autoimmunity, or immunodeficiency. Herein, we describe two unrelated patients suffering since the neonatal period from a complex disease mainly characterized by severe sterile inflammation, recurrent bacterial infections, and marked humoral immunodeficiency. Whole-exome sequencing detected a novel, de novo heterozygous PLCG2 variant in each patient (p.Ala708Pro and p.Leu845_Leu848del). A clear enhanced PLCγ2 activity for both variants was demonstrated by both ex vivo calcium responses of the patient's B cells to IgM stimulation and in vitro assessment of PLC activity. These data supported the autoinflammation and PLCγ2-associated antibody deficiency and immune dysregulation (APLAID) diagnosis in both patients. Immunological evaluation revealed a severe decrease of immunoglobulins and B cells, especially class-switched memory B cells, with normal T and NK cell counts. Analysis of bone marrow of one patient revealed a reduced immature B cell fraction compared with controls. Additional investigations showed that both PLCG2 variants activate the NLRP3-inflammasome through the alternative pathway instead of the canonical pathway. Collectively, the evidences here shown expand APLAID diversity toward more severe phenotypes than previously reported including dominantly inherited agammaglobulinemia, add novel data about its genetic basis, and implicate the alternative NLRP3-inflammasome activation pathway in the basis of sterile inflammation.


Asunto(s)
Agammaglobulinemia/diagnóstico , Agammaglobulinemia/genética , Enfermedades Autoinflamatorias Hereditarias/diagnóstico , Enfermedades Autoinflamatorias Hereditarias/genética , Mutación , Fosfolipasa C gamma/genética , Adolescente , Agammaglobulinemia/terapia , Autoinmunidad/genética , Biomarcadores , Caspasa 1/metabolismo , Niño , Citocinas/metabolismo , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Enfermedades Autoinflamatorias Hereditarias/terapia , Humanos , Inflamasomas/metabolismo , Masculino , Linaje , Fenotipo , Fosfolipasa C gamma/química , Fosfolipasa C gamma/metabolismo , Relación Estructura-Actividad
9.
Genet Med ; 22(7): 1215-1226, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32376980

RESUMEN

PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies.


Asunto(s)
Discapacidad Intelectual , Transcriptoma , Exoma , Células Germinativas , Humanos , Discapacidad Intelectual/genética , Mutación Missense , Fenotipo , Transcriptoma/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral
10.
Hum Mutat ; 40(1): 115-126, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30353964

RESUMEN

In recent years, next-generation sequencing (NGS) has become a cornerstone of clinical genetics and diagnostics. Many clinical applications require high precision, especially if rare events such as somatic mutations in cancer or genetic variants causing rare diseases need to be identified. Although random sequencing errors can be modeled statistically and deep sequencing minimizes their impact, systematic errors remain a problem even at high depth of coverage. Understanding their source is crucial to increase precision of clinical NGS applications. In this work, we studied the relation between recurrent biases in allele balance (AB), systematic errors, and false positive variant calls across a large cohort of human samples analyzed by whole exome sequencing (WES). We have modeled the AB distribution for biallelic genotypes in 987 WES samples in order to identify positions recurrently deviating significantly from the expectation, a phenomenon we termed allele balance bias (ABB). Furthermore, we have developed a genotype callability score based on ABB for all positions of the human exome, which detects false positive variant calls that passed state-of-the-art filters. Finally, we demonstrate the use of ABB for detection of false associations proposed by rare variant association studies. Availability: https://github.com/Francesc-Muyas/ABB.


Asunto(s)
Alelos , Enfermedad/genética , Técnicas de Genotipaje , Sesgo , Bases de Datos Genéticas , Estudios de Asociación Genética , Genoma Humano , Genotipo , Humanos , Modelos Genéticos , Polimorfismo de Nucleótido Simple/genética
11.
Hum Mutat ; 40(7): 865-878, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31026367

RESUMEN

Mendelian diseases have shown to be an and efficient model for connecting genotypes to phenotypes and for elucidating the function of genes. Whole-exome sequencing (WES) accelerated the study of rare Mendelian diseases in families, allowing for directly pinpointing rare causal mutations in genic regions without the need for linkage analysis. However, the low diagnostic rates of 20-30% reported for multiple WES disease studies point to the need for improved variant pathogenicity classification and causal variant prioritization methods. Here, we present the exome Disease Variant Analysis (eDiVA; http://ediva.crg.eu), an automated computational framework for identification of causal genetic variants (coding/splicing single-nucleotide variants and small insertions and deletions) for rare diseases using WES of families or parent-child trios. eDiVA combines next-generation sequencing data analysis, comprehensive functional annotation, and causal variant prioritization optimized for familial genetic disease studies. eDiVA features a machine learning-based variant pathogenicity predictor combining various genomic and evolutionary signatures. Clinical information, such as disease phenotype or mode of inheritance, is incorporated to improve the precision of the prioritization algorithm. Benchmarking against state-of-the-art competitors demonstrates that eDiVA consistently performed as a good or better than existing approach in terms of detection rate and precision. Moreover, we applied eDiVA to several familial disease cases to demonstrate its clinical applicability.


Asunto(s)
Secuenciación del Exoma/métodos , Mutación , Enfermedades Raras/genética , Algoritmos , Bases de Datos Genéticas , Predisposición Genética a la Enfermedad , Humanos , Aprendizaje Automático , Padres , Navegador Web
12.
Hum Mutat ; 39(8): 1126-1138, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29851191

RESUMEN

Highly conserved TREX-mediated mRNA export is emerging as a key pathway in neuronal development and differentiation. TREX subunit variants cause neurodevelopmental disorders (NDDs) by interfering with mRNA export from the cell nucleus to the cytoplasm. Previously we implicated four missense variants in the X-linked THOC2 gene in intellectual disability (ID). We now report an additional six affected individuals from five unrelated families with two de novo and three maternally inherited pathogenic or likely pathogenic variants in THOC2 extending the genotypic and phenotypic spectrum. These comprise three rare missense THOC2 variants that affect evolutionarily conserved amino acid residues and reduce protein stability and two with canonical splice-site THOC2 variants that result in C-terminally truncated THOC2 proteins. We present detailed clinical assessment and functional studies on a de novo variant in a female with an epileptic encephalopathy and discuss an additional four families with rare variants in THOC2 with supportive evidence for pathogenicity. Severe neurocognitive features, including movement and seizure disorders, were observed in this cohort. Taken together our data show that even subtle alterations to the canonical molecular pathways such as mRNA export, otherwise essential for cellular life, can be compatible with life, but lead to NDDs in humans.


Asunto(s)
Epilepsia/metabolismo , Exones/genética , Trastornos del Crecimiento/metabolismo , Discapacidad Intelectual/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Niño , Preescolar , Epilepsia/genética , Femenino , Trastornos del Crecimiento/genética , Células HEK293 , Células HeLa , Humanos , Discapacidad Intelectual/genética , Masculino , Mutación Missense/genética , Isoformas de Proteínas/genética , Transporte de ARN/genética , Transporte de ARN/fisiología , Proteínas de Unión al ARN/genética
13.
BMC Genomics ; 15: 564, 2014 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-24996980

RESUMEN

BACKGROUND: Crohn's disease (CD) is an inflammatory bowel disease caused by genetic and environmental factors. More than 160 susceptibility loci have been identified for IBD, yet a large part of the genetic variance remains unexplained. Recent studies have demonstrated genetic differences between monozygotic twins, who were long thought to be genetically completely identical. RESULTS: We aimed to test if somatic mutations play a role in CD etiology by sequencing the genomes and exomes of directly affected tissue from the bowel and blood samples of one and the blood-derived exomes of two further monozygotic discordant twin pairs. Our goal was the identification of mutations present only in the affected twins, pointing to novel candidates for CD susceptibility loci. We present a thorough genetic characterization of the sequenced individuals but detected no consistent differences within the twin pairs. An estimate of the CD susceptibility based on known CD loci however hinted at a higher mutational load in all three twin pairs compared to 1,920 healthy individuals. CONCLUSION: Somatic mosaicism does not seem to play a role in the discordance of monozygotic CD twins. Our study constitutes the first to perform whole genome sequencing for CD twins and therefore provides a valuable reference dataset for future studies. We present an example framework for mosaicism detection and point to the challenges in these types of analyses.


Asunto(s)
Enfermedad de Crohn/genética , Exoma , Gemelos Monocigóticos/genética , Adulto , Secuencia de Bases , Variaciones en el Número de Copia de ADN , Femenino , Predisposición Genética a la Enfermedad , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Persona de Mediana Edad , Datos de Secuencia Molecular , Mutación , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
14.
Pediatr Neurol ; 155: 8-17, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569228

RESUMEN

BACKGROUND: TRAF7-related cardiac, facial, and digital anomalies with developmental delay (CAFDADD), a multisystemic neurodevelopmental disorder caused by germline missense variants in the TRAF7 gene, exhibits heterogeneous clinical presentations. METHODS: We present a detailed description of 11 new TRAF7-related CAFDADD cases, featuring eight distinct variants, including a novel one. RESULTS: Phenotypic analysis and a comprehensive review of the 58 previously reported cases outline consistent clinical presentations, emphasizing dysmorphic features, developmental delay, endocrine manifestations, and cardiac defects. In this enlarged collection, novelties include a wider range of cognitive dysfunction, with some individuals exhibiting normal development despite early psychomotor delay. Communication challenges, particularly in expressive language, are prevalent, necessitating alternative communication methods. Autistic traits, notably rigidity, are observed in the cohort. Also, worth highlighting are hearing loss, sleep disturbances, and endocrine anomalies, including growth deficiency. Cardiac defects, frequently severe, pose early-life complications. Facial features, including arched eyebrows, contribute to the distinct gestalt. A novel missense variant, p.(Arg653Leu), further underscores the complex relationship between germline TRAF7 variants and somatic changes linked to meningiomas. CONCLUSIONS: Our comprehensive analysis expands the phenotypic spectrum, emphasizing the need for oncological evaluations and proposing an evidence-based schedule for clinical management. This study contributes to a better understanding of TRAF7-related CAFDADD, offering insights for improved diagnosis, intervention, and patient care.


Asunto(s)
Discapacidades del Desarrollo , Cardiopatías Congénitas , Fenotipo , Humanos , Discapacidades del Desarrollo/genética , Masculino , Femenino , Niño , Preescolar , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/fisiopatología , Lactante , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Mutación Missense , Adolescente
15.
Trends Endocrinol Metab ; 35(6): 478-489, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38553405

RESUMEN

Musculoskeletal research should synergistically investigate bone and muscle to inform approaches for maintaining mobility and to avoid bone fractures. The relationship between sarcopenia and osteoporosis, integrated in the term 'osteosarcopenia', is underscored by the close association shown between these two conditions in many studies, whereby one entity emerges as a predictor of the other. In a recent workshop of Working Group (WG) 2 of the EU Cooperation in Science and Technology (COST) Action 'Genomics of MusculoSkeletal traits Translational Network' (GEMSTONE) consortium (CA18139), muscle characterization was highlighted as being important, but currently under-recognized in the musculoskeletal field. Here, we summarize the opinions of the Consortium and research questions around translational and clinical musculoskeletal research, discussing muscle phenotyping in human experimental research and in two animal models: zebrafish and mouse.


Asunto(s)
Fenotipo , Animales , Humanos , Músculo Esquelético/metabolismo , Pez Cebra , Ratones , Sarcopenia/metabolismo , Sarcopenia/fisiopatología , Enfermedades Musculoesqueléticas/fisiopatología , Enfermedades Musculoesqueléticas/genética , Osteoporosis/metabolismo , Osteoporosis/patología
16.
Cell Death Discov ; 10(1): 85, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368420

RESUMEN

Through GWAS studies we identified PATJ associated with functional outcome after ischemic stroke (IS). The aim of this study was to determine PATJ role in brain endothelial cells (ECs) in the context of stroke outcome. PATJ expression analyses in patient's blood revealed that: (i) the risk allele of rs76221407 induces higher expression of PATJ, (ii) PATJ is downregulated 24 h after IS, and (iii) its expression is significantly lower in those patients with functional independence, measured at 3 months with the modified Rankin scale ((mRS) ≤2), compared to those patients with marked disability (mRS = 4-5). In mice brains, PATJ was also downregulated in the injured hemisphere at 48 h after ischemia. Oxygen-glucose deprivation and hypoxia-dependent of Hypoxia Inducible Factor-1α also caused PATJ depletion in ECs. To study the effects of PATJ downregulation, we generated PATJ-knockdown human microvascular ECs. Their transcriptomic profile evidenced a complex cell reprogramming involving Notch, TGF-ß, PI3K/Akt, and Hippo signaling that translates in morphological and functional changes compatible with endothelial to mesenchymal transition (EndMT). PATJ depletion caused loss of cell-cell adhesion, upregulation of metalloproteases, actin cytoskeleton remodeling, cytoplasmic accumulation of the signal transducer C-terminal transmembrane Mucin 1 (MUC1-C) and downregulation of Notch and Hippo signaling. The EndMT phenotype of PATJ-depleted cells was associated with the nuclear recruitment of MUC1-C, YAP/TAZ, ß-catenin, and ZEB1. Our results suggest that PATJ downregulation 24 h after IS promotes EndMT, an initial step prior to secondary activation of a pro-angiogenic program. This effect is associated with functional independence suggesting that activation of EndMT shortly after stroke onset is beneficial for stroke recovery.

17.
Hum Mol Genet ; 20(15): 3067-78, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21558425

RESUMEN

MicroRNAs (miRNAs) are post-transcriptional gene expression regulators, playing key roles in neuronal development, plasticity and disease. Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by the presence of protein inclusions or Lewy bodies and a progressive loss of dopaminergic neurons in the midbrain. Here, we have evaluated miRNA expression deregulation in PD brain samples. MiRNA expression profiling revealed decreased expression of miR-34b and miR-34c in brain areas with variable neuropathological affectation at clinical (motor) stages (Braak stages 4 and 5) of the disease, including the amygdala, frontal cortex, substantia nigra and cerebellum. Furthermore, misregulation of miR-34b/c was detected in pre-motor stages (stages 1-3) of the disease, and thus in cases that did not receive any PD-related treatment during life. Depletion of miR-34b or miR-34c in differentiated SH-SY5Y dopaminergic neuronal cells resulted in a moderate reduction in cell viability that was accompanied by altered mitochondrial function and dynamics, oxidative stress and reduction in total cellular adenosin triphosphate content. MiR-34b/c downregulation was coupled to a decrease in the expression of DJ1 and Parkin, two proteins associated to familial forms of PD that also have a role in idiopathic cases. Accordingly, DJ1 and Parkin expression was reduced in PD brain samples displaying strong miR-34b/c downregulation. We propose that early deregulation of miR-34b/c in PD triggers downstream transcriptome alterations underlying mitochondrial dysfunction and oxidative stress, which ultimately compromise cell viability. A better understanding of the cellular pathways controlling and/or controlled by miR-34b/c should allow identification of targets for development of therapeutic approaches.


Asunto(s)
MicroARNs/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Western Blotting , Línea Celular Tumoral , Humanos , Microscopía Electrónica de Transmisión , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
BMC Genet ; 14: 61, 2013 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-23829304

RESUMEN

BACKGROUND: The Butyrophilin-like (BTNL) proteins are likely to play an important role in inflammation and immune response. Like the B7 protein family, many human and murine BTNL members have been shown to control T lymphocytes response, and polymorphisms in human BTNL2 have been linked to several inflammatory diseases, such as pulmonary sarcoidosis, inflammatory bowel disease and neonatal lupus. RESULTS: In this study we provide a comprehensive population, genomic and transcriptomic analysis of a 56-kb deletion copy number variant (CNV), located within two segmental duplications of two genes belonging to the BTNL family, namely BTNL8 and BTNL3. We confirm the presence of a novel BTNL8*3 fusion-protein product, and show an influence of the deletion variant on the expression level of several genes involved in immune function, including BTNL9, another member of the same family. Moreover, by genotyping HapMap and human diversity panel (HGDP) samples, we demonstrate a clear difference in the stratification of the BTNL8_BTNL3-del allele frequency between major continental human populations. CONCLUSION: Despite tremendous progress in the field of structural variation, rather few CNVs have been functionally characterized so far. Here, we show clear functional consequences of a new deletion CNV (BTNL8_BTNL3-del) with potentially important implication in the human immune system and in inflammatory and proliferative disorders. In addition, the marked population differences found of BTNL8_BTNL3-del frequencies suggest that this deletion CNV might have evolved under positive selection due to environmental conditions in some populations, with potential phenotypic consequences.


Asunto(s)
Glicoproteínas de Membrana/genética , Primates/genética , Eliminación de Secuencia , Alelos , Animales , Secuencia de Bases , Butirofilinas , Hibridación Genómica Comparativa , ADN/genética , Humanos , Desequilibrio de Ligamiento , Ratones , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Homología de Secuencia de Aminoácido
19.
Arthritis Rheum ; 63(7): 1860-5, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21400479

RESUMEN

OBJECTIVE: The LCE3C_LCE3B-del variant is associated with psoriasis and rheumatoid arthritis. Its role in psoriatic arthritis (PsA) is unclear, however, as shown by 3 recent studies with contradictory results. In order to investigate whether LCE3C_LCE3B-del constitutes a risk factor for PsA susceptibility, we first tested this variant in patients with PsA from Spanish and Italian populations and then performed a meta-analysis including the previous case-control studies. METHODS: We genotyped LCE3C_LCE3B-del and its tag single-nucleotide polymorphism (SNP), rs4112788, in an original discovery cohort of 424 Italian patients with PsA and 450 unaffected control subjects. A Spanish replication cohort consisting of 225 patients with PsA and 469 control subjects was also genotyped. A meta-analysis considering 7,758 control subjects and 2,325 patients with PsA was also performed. RESULTS: We observed a significant association between PsA and the LCE3C_LCE3B-del tag SNP in the Italian and Spanish cohorts, with an overall corrected P value of 0.00019 and a corresponding odds ratio of 1.35 (95% confidence interval 1.14-1.59). Stratified analyses by subphenotype indicated a stronger association for patients with oligoarticular disease. Meta-analysis including data from all previous published studies confirmed an association of PsA with the LCE3C_LCE3B-del tag SNP. CONCLUSION: LCE3C_LCE3B-del is a susceptibility factor for PsA, confirming the existence of a shared risk factor involving the epidermal skin barrier in autoimmune disorders.


Asunto(s)
Artritis Psoriásica/genética , Proteínas Ricas en Prolina del Estrato Córneo/genética , Predisposición Genética a la Enfermedad , Adulto , Alelos , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Genotipo , Humanos , Italia , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , España , Población Blanca/genética
20.
JBMR Plus ; 6(4): e10602, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35434450

RESUMEN

Osteoporosis is the most common bone disease, characterized by a low bone mineral density (BMD) and increased risk of fracture. At the other end of the BMD spectrum, some individuals present strong, fracture-resistant, bones. Both osteoporosis and high BMD are heritable and their genetic architecture encompasses polygenic inheritance of common variants and some cases of monogenic highly penetrant variants in causal genes. We have investigated the genetics of high BMD in a family segregating this trait in an apparently Mendelian dominant pattern. We searched for rare causal variants by whole-exome sequencing in three affected and three nonaffected family members. Using this approach, we have identified 38 rare coding variants present in the proband and absent in the three individuals with normal BMD. Although we have found four variants shared by the three affected members of the family, we have not been able to relate any of these to the high-BMD phenotype. In contrast, we have identified missense variants in two genes, VAV3 and ADGRE5, each shared by two of out of three affected members, whose loss of function fits with the phenotype of the family. In particular, the proband, a woman displaying the highest BMD (sum Z-score = 7), carries both variants, whereas the other two affected members carry one each. VAV3 encodes a guanine-nucleotide-exchange factor with an important role in osteoclast activation and function. Although no previous cases of VAV3 mutations have been reported in humans, Vav3 knockout (KO) mice display dense bones, similarly to the high-BMD phenotype present in our family. The ADGRE5 gene encodes an adhesion G protein-coupled receptor expressed in osteoclasts whose KO mouse displays increased trabecular bone volume. Combined, these mouse and human data highlight VAV3 and ADGRE5 as novel putative high-BMD genes with additive effects, and potential therapeutic targets for osteoporosis. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA