Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nucleic Acids Res ; 50(9): 5095-5110, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35544277

RESUMEN

Promoters and enhancers are sites of transcription initiation (TSSs) and carry specific histone modifications, including H3K4me1, H3K4me3, and H3K27ac. Yet, the principles governing the boundaries of such regulatory elements are still poorly characterized. Alu elements are good candidates for a boundary function, being highly abundant in gene-rich regions, while essentially excluded from regulatory elements. Here, we show that the interval ranging from TSS to first upstream Alu, accommodates all H3K4me3 and most H3K27ac marks, while excluding DNA methylation. Remarkably, the average length of these intervals greatly varies in-between tissues, being longer in stem- and shorter in immune-cells. The very shortest TSS-to-first-Alu intervals were observed at promoters active in T-cells, particularly at immune genes, where first-Alus were traversed by RNA polymerase II transcription, while accumulating H3K4me1 signal. Finally, DNA methylation at first-Alus was found to evolve with age, regressing from young to middle-aged, then recovering later in life. Thus, the first-Alus upstream of TSSs appear as dynamic boundaries marking the transition from DNA methylation to active histone modifications at regulatory elements, while also participating in the recording of immune gene transcriptional events by positioning H3K4me1-modified nucleosomes.


Asunto(s)
Código de Histonas , Secuencias Reguladoras de Ácidos Nucleicos , Epigénesis Genética , Epigenómica , Regiones Promotoras Genéticas
2.
EMBO Rep ; 22(9): e52320, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34312949

RESUMEN

HP1 proteins are best known as markers of heterochromatin and gene silencing. Yet, they are also RNA-binding proteins and the HP1γ/CBX3 family member is present on transcribed genes together with RNA polymerase II, where it regulates co-transcriptional processes such as alternative splicing. To gain insight in the role of the RNA-binding activity of HP1γ in transcriptionally active chromatin, we have captured and analysed RNAs associated with this protein. We find that HP1γ is specifically targeted to hexameric RNA motifs and coincidentally transposable elements of the SINE family. As these elements are abundant in introns, while essentially absent from exons, the HP1γ RNA association tethers unspliced pre-mRNA to chromatin via the intronic regions and limits the usage of intronic cryptic splice sites. Thus, our data unveil novel determinants in the relationship between chromatin and co-transcriptional splicing.


Asunto(s)
Precursores del ARN , Empalme del ARN , Empalme Alternativo/genética , Intrones/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , Proteínas de Unión al ARN
3.
EMBO J ; 33(22): 2606-22, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25216677

RESUMEN

HP1 proteins are transcriptional regulators that, like histones, are targets for post-translational modifications defining an HP1-mediated subcode. HP1γ has multiple phosphorylation sites, including serine 83 (S83) that marks it to sites of active transcription. In a guinea pig model for Shigella enterocolitis, we observed that the defective type III secretion mxiD Shigella flexneri strain caused more HP1γ phosphorylation in the colon than the wild-type strain. Shigella interferes with HP1 phosphorylation by injecting the phospholyase OspF. This effector interacts with HP1γ and alters its phosphorylation at S83 by inactivating ERK and consequently MSK1, a downstream kinase. MSK1 that here arises as a novel HP1γ kinase, phosphorylates HP1γ at S83 in the context of an MSK1-HP1γ complex, and thereby favors its accumulation on its target genes. Genome-wide transcriptome analysis reveals that this mechanism is linked to up-regulation of proliferative gene and fine-tuning of immune gene expression. Thus, in addition to histones, bacteria control host transcription by modulating the activity of HP1 proteins, with potential implications in transcriptional reprogramming at the mucosal barrier.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Liasas de Carbono-Oxígeno/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Disentería Bacilar/metabolismo , Enterocolitis/metabolismo , Shigella flexneri/metabolismo , Transcriptoma , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Liasas de Carbono-Oxígeno/genética , Células Cultivadas , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Modelos Animales de Enfermedad , Disentería Bacilar/genética , Disentería Bacilar/patología , Enterocolitis/genética , Enterocolitis/patología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Estudio de Asociación del Genoma Completo , Cobayas , Ratones , Ratones Mutantes , Fosforilación , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Shigella flexneri/genética
4.
Development ; 138(11): 2261-71, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21558374

RESUMEN

In female meiosis, chromosome missegregations lead to the generation of aneuploid oocytes and can cause the development of trisomies or infertility. Because mammalian female meiosis I is error prone, the full functionality of control mechanisms, such as the spindle assembly checkpoint (SAC), has been put into question. The SAC monitors the correct orientation, microtubule occupancy and tension on proteinaceous structures named kinetochores. Although it has been shown previously that the SAC exists in meiosis I, where attachments are monopolar, the role of microtubule occupancy for silencing the SAC and the importance of certain essential SAC components, such as the kinase Mps1, are unknown in mammalian oocytes. Using a conditional loss-of-function approach, we address the role of Mps1 in meiotic progression and checkpoint control in meiosis I. Our data demonstrate that kinetochore localization of Mps1 is required for the proper timing of prometaphase and is essential for SAC control, chromosome alignment and aurora C localization in meiosis I. The absence of Mps1 from kinetochores severely impairs chromosome segregation in oocyte meiosis I and, therefore, fertility in mice. In addition, we settle a long-standing question in showing that kinetochore-microtubule attachments are present in prometaphase I at a time when most of the SAC protein Mad2 disappears from kinetochores.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Meiosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Segregación Cromosómica , Femenino , Técnica del Anticuerpo Fluorescente , Proteínas Mad2 , Ratones , Ratones Transgénicos , Microtúbulos/metabolismo , Oocitos/citología , Oocitos/metabolismo , Reacción en Cadena de la Polimerasa , Huso Acromático/metabolismo
5.
Arch Biochem Biophys ; 534(1-2): 20-6, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23031499

RESUMEN

Neuronal differentiation from neural stem cells into mature neurons is guided by the concerted action of specific transcription factors that stepwise exercise their role in the context of defined chromatin states. Amongst the classes of proteins that influence chromatin compaction and modification are nucleosome assembly proteins (NAPs). Mammals possess several nucleosome assembly protein 1 like proteins (NAP1L) that show either ubiquitous or neuron-restricted expression. The latter group is presumably involved in the process of neuronal differentiation. Mammalian NAP1Ls can potentially form both homo- and hetero-dimers and octamers, in theory allowing thousands of different combinations to be formed. Detailed studies have been performed on several of the NAP1Ls that point to a range of molecular roles, including transcriptional regulation, nuclear import, and control of cell division. This article aims at summarizing current knowledge of the mammalian NAP1L family and its interactions.


Asunto(s)
Neurogénesis , Neuronas/citología , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Nucleosomas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Neuronas/metabolismo , Proteína 1 de Ensamblaje de Nucleosomas/genética , Nucleosomas/genética , Unión Proteica , Mapeo de Interacción de Proteínas/métodos , Transcripción Genética
6.
Life Sci Alliance ; 4(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33446491

RESUMEN

Accumulation of senescent cells is an important contributor to chronic inflammation upon aging. The inflammatory phenotype of senescent cells was previously shown to be driven by cytoplasmic DNA. Here, we propose that cytoplasmic double-stranded RNA has a similar effect. We find that several cell types driven into senescence by different routes share an accumulation of long promoter RNAs and 3' gene extensions rich in retrotransposon sequences. Accordingly, these cells display increased expression of genes involved in response to double stranded RNA of viral origin downstream of the interferon pathway. The RNA accumulation is associated with evidence of reduced RNA turnover, including in some cases, reduced expression of RNA exosome subunits. Reciprocally, depletion of RNA exosome subunit EXOSC3 accelerated expression of multiple senescence markers. A senescence-like RNA accumulation was also observed in cells exposed to oxidative stress, an important trigger of cellular senescence. Altogether, we propose that in a subset of senescent cells, repeat-containing transcripts stabilized by oxidative stress or reduced RNA exosome activity participate in driving and maintaining the permanent inflammatory state characterizing cellular senescence.


Asunto(s)
Senescencia Celular/genética , Estabilidad del ARN/genética , ARN/metabolismo , Línea Celular , Daño del ADN , Humanos , Inflamación/metabolismo , Estrés Oxidativo/genética , Fenotipo , ARN/genética , ARN Bicatenario/efectos adversos , ARN Bicatenario/genética , Retroelementos/genética
7.
Mol Cell Biol ; 27(17): 6093-102, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17591696

RESUMEN

The deletion of the neuronal Nap1l2 (nucleosome assembly protein 1-like 2) gene in mice causes neural tube defects. We demonstrate here that this phenotype correlates with deficiencies in differentiation and increased maintenance of the neural stem cell stage. Nap1l2 associates with chromatin and interacts with histones H3 and H4. Loss of Nap1l2 results in decreased histone acetylation activity, leading to transcriptional changes in differentiating neurons, which include the marked downregulation of the Cdkn1c (cyclin-dependent kinase inhibitor 1c) gene. Cdkn1c expression normally increases during neuronal differentiation, and this correlates with the specific recruitment of the Nap1l2 protein and an increase in acetylated histone H3K9/14 at the site of Cdkn1c transcription. These results lead us to suggest that the Nap1l2 protein plays an important role in regulating transcription in developing neurons via the control of histone acetylation. Our data support the idea that neuronal nucleosome assembly proteins mediate cell-type-specific mechanisms of establishment/modification of a chromatin-permissive state that can affect neurogenesis and neuronal survival.


Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Acetilación , Animales , Proliferación Celular , Cromatina/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histona Acetiltransferasas/metabolismo , Humanos , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Fenotipo , Células Madre/fisiología , Transcripción Genética
8.
Mol Endocrinol ; 16(7): 1502-10, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12089346

RESUMEN

Nuclear receptors (NR) activate transcription by interacting with several different coactivator complexes, primarily via LXXLL motifs (NR boxes) of the coactivator that bind a common region in the ligand binding domain of nuclear receptors (activation function-2, AF-2) in a ligand-dependent fashion. However, how nuclear receptors distinguish between different sets of coactivators remains a mystery, as does the mechanism by which orphan receptors such as hepatocyte nuclear factor 4alpha (HNF4alpha) activate transcription. In this study, we show that HNF4alpha interacts with a complex containing vitamin D receptor (VDR)-interacting proteins (DRIPs) in the absence of exogenously added ligand. However, whereas a full-length DRIP205 construct enhanced the activation by HNF4alpha in vivo, it did not interact well with the HNF4alpha ligand binding domain in vitro. In investigating this discrepancy, we found that the polyamine spermine significantly enhanced the interaction between HNF4alpha and full-length DRIP205 in an AF-2, NR-box-dependent manner. Spermine also enhanced the interaction of DRIP205 with the VDR even in the presence of its ligand, but decreased the interaction of both HNF4alpha and VDR with the p160 coactivator glucocorticoid receptor interacting protein 1 (GR1P1). We also found that GR1P1 and DRIP205 synergistically activated HNF4alpha-mediated transcription and that a specific inhibitor of polyamine biosynthesis, alpha-difluoromethylornithine (DFMO), decreased the ability of HNF4alpha to activate transcription in vivo. These results lead us to propose a model in which polyamines may facilitate the switch between different coactivator complexes binding to NRs.


Asunto(s)
Proteínas Portadoras , Proteínas de Unión al ADN , Fosfoproteínas/metabolismo , Poliaminas/metabolismo , Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Sitios de Unión , Células Cultivadas , Eflornitina/farmacología , Factor Nuclear 4 del Hepatocito , Humanos , Subunidad 1 del Complejo Mediador , Coactivador 2 del Receptor Nuclear , Fosfoproteínas/efectos de los fármacos , Fosfoproteínas/genética , Poliaminas/farmacología , Ratas , Receptores de Calcitriol/efectos de los fármacos , Receptores de Calcitriol/genética , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Hormona Tiroidea/efectos de los fármacos , Receptores de Hormona Tiroidea/genética , Espermina/metabolismo , Espermina/farmacología , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/genética , Transcripción Genética
9.
Mol Endocrinol ; 17(11): 2329-39, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12893881

RESUMEN

Cell programs such as proliferation and differentiation involve the sequential activation and repression of gene expression. Vitamin D, via its active metabolite 1,25-dihydroxyvitamin D [1,25-(OH)2D3)], controls the proliferation and differentiation of a number of cell types, including keratinocytes, by directly regulating transcription. Two classes of coactivators, the vitamin D receptor (VDR)-interacting proteins (DRIP/mediator) and the p160 steroid receptor coactivator family (SRC/p160), control the actions of nuclear hormone receptors, including the VDR. However, the relationship between these two classes of coactivators is not clear. Using glutathione-S-transferase-VDR affinity beads, we have identified the DRIP/mediator complex as the major VDR binding complex in proliferating keratinocytes. After the cells differentiated, members of the SRC/p160 family were identified in the complex but not major DRIP subunits. Both DRIP and SRC proteins were expressed in keratinocytes. DRIP205 expression decreased during differentiation, although SRC-3 levels increased. Both DRIP205 and SRC-3 potentiated vitamin D-induced transcription in proliferating cells, but during differentiation, DRIP205 was no longer effective. These results indicate that these two distinct coactivators are sequentially involved in vitamin D regulation of gene transcription during keratinocyte differentiation, suggesting that these coactivators are part of the means by which the temporal sequence of gene expression is regulated during the differentiation process.


Asunto(s)
Queratinocitos/citología , Queratinocitos/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Calcitriol/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Secuencia de Aminoácidos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Células Cultivadas , Histona Acetiltransferasas , Humanos , Recién Nacido , Queratinocitos/efectos de los fármacos , Masculino , Espectrometría de Masas , Complejo Mediador , Subunidad 1 del Complejo Mediador , Datos de Secuencia Molecular , Peso Molecular , Coactivador 1 de Receptor Nuclear , Unión Proteica , Activación Transcripcional/efectos de los fármacos , Vitamina D/farmacología
10.
Nat Commun ; 6: 6946, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25897860

RESUMEN

Mammalian female meiosis is error prone, with rates of meiotic chromosome missegregations strongly increasing towards the end of the reproductive lifespan. A strong reduction of BubR1 has been observed in oocytes of women approaching menopause and in ovaries of aged mice, which led to the hypothesis that a gradual decline of BubR1 contributes to age-related aneuploidization. Here we employ a conditional knockout approach in mouse oocytes to dissect the meiotic roles of BubR1. We show that BubR1 is required for diverse meiotic functions, including persistent spindle assembly checkpoint activity, timing of meiosis I and the establishment of robust kinetochore-microtubule attachments in a meiosis-specific manner, but not prophase I arrest. These data reveal that BubR1 plays a multifaceted role in chromosome segregation during the first meiotic division and suggest that age-related decline of BubR1 is a key determinant of the formation of aneuploid oocytes as women approach menopause.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/fisiología , Profase Meiótica I/fisiología , Oocitos/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Femenino , Leviviridae , Ratones , Ratones Endogámicos , Proteínas Serina-Treonina Quinasas/genética
11.
J Steroid Biochem Mol Biol ; 89-90(1-5): 273-6, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15225784

RESUMEN

Cell programs such as proliferation and differentiation involve the sequential activation and repression of gene expression. Vitamin D, via its active metabolite 1,25-dihydroxyvitamin D (1,25(OH)(2)D(3)), controls the proliferation and differentiation of a number of cell types, including keratinocytes, by directly regulating transcription. Two classes of coactivators, the Vitamin D receptor (VDR) interacting proteins (DRIP/mediator) and the p160 steroid receptor coactivator family (SRC/p160), control the actions of nuclear hormone receptors, including the Vitamin D receptor. However, the relationship between these two classes of coactivators is not clear. Using GST-VDR affinity beads, we have identified the DRIP/mediator complex as the major VDR binding complex in proliferating keratinocytes. After the cells differentiated, members of the SRC/p160 family were identified in the complex but not major DRIP subunits. Both DRIP205 and SRC-3 potentiated Vitamin D-induced transcription in proliferating cells, but during differentiation, DRIP205 was no longer effective. These results indicate that these two distinct coactivators are differentially involved in Vitamin D regulation of gene transcription during keratinocyte differentiation, suggesting that these coactivators are part of the means by which the temporal sequence of gene expression is regulated during the differentiation process.


Asunto(s)
Diferenciación Celular , Queratinocitos/metabolismo , Proteínas Nucleares/fisiología , Receptores de Calcitriol/genética , Transactivadores/fisiología , Factores de Transcripción/fisiología , Activación Transcripcional/fisiología , Animales , Queratinocitos/citología , Complejo Mediador , Ratas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
12.
Microb Cell ; 2(1): 26-28, 2014 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-28357260

RESUMEN

Shigella flexneri, a gram-negative bacterium responsible of bacillary dysentery, uses multiple strategies to overcome host immune defense. We have decrypted how this bacterium manipulates host-cell chromatin binders to take control of immune gene expression. We found that OspF, an injected virulence factor previously identified as a repressor of immune gene expression, targets the chromatin reader HP1γ. Heterochromatin Protein 1 family members specifically recognize and bind histone H3 methylated at Lys 9. Although initially identified as chromatin-associated transcriptional silencers in heterochromatin, their location in euchromatin indicates an active role in gene expression. Notably, HP1γ phosphorylation at Serine 83 defines a subpopulation exclusively located to euchromatin, targeted to the site of transcriptional elongation. We showed that OspF directly interacts with HP1γ, and causes HP1 dephosphorylation, suggesting a model in which this virulence effector "uses" HP1 proteins as beacons to target and repress immune gene expression (Harouz, et al. EMBO J (2014)). OspF alters HP1γ phosphorylation mainly by inactivating the Erk-activated kinase MSK1, spotlighting it as a new HP1 kinase. In vivo, infectious stresses trigger HP1γ phosphorylation in the colon, principally in the lamina propria and the intestinal crypts. Several lines of evidence suggest that HP1 proteins are modified as extensively as histones, and decrypting the impact of these HP1 post-translational modifications on their transcriptional activities in vivo will be the next challenges to be taken up.

13.
J Clin Invest ; 124(3): 1037-51, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24531544

RESUMEN

The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectrometry-based search for FXR-interacting proteins in human hepatoma cells and identified AMPK as a coregulator of FXR. FXR interacted with the nutrient-sensitive kinase AMPK in the cytoplasm of target cells and was phosphorylated in its hinge domain. In cultured human and murine hepatocytes and enterocytes, pharmacological activation of AMPK inhibited FXR transcriptional activity and prevented FXR coactivator recruitment to promoters of FXR-regulated genes. Furthermore, treatment with AMPK activators, including the antidiabetic biguanide metformin, inhibited FXR agonist induction of FXR target genes in mouse liver and intestine. In a mouse model of intrahepatic cholestasis, metformin treatment induced FXR phosphorylation, perturbed bile acid homeostasis, and worsened liver injury. Together, our data indicate that AMPK directly phosphorylates and regulates FXR transcriptional activity to precipitate liver injury under conditions favoring cholestasis.


Asunto(s)
Adenilato Quinasa/metabolismo , Ácidos y Sales Biliares/biosíntesis , Homeostasis , Hipoglucemiantes/farmacología , Metformina/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo , Adenilato Quinasa/antagonistas & inhibidores , Secuencia de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Transporte Biológico , Células CACO-2 , Colestasis Intrahepática/metabolismo , Colestasis Intrahepática/patología , Células Hep G2 , Humanos , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Procesamiento Proteico-Postraduccional , Receptores Citoplasmáticos y Nucleares/química , Ribonucleótidos/farmacología , Transducción de Señal , Transactivadores/metabolismo , Transcripción Genética , Activación Transcripcional/efectos de los fármacos
14.
Transcription ; 4(3): 89-91, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23584094

RESUMEN

Whereas in yeast the function and mode of action of nuclear RNAi are well documented, mammalian nuclear RNAi is a matter of debates. Several papers support a role for nuclear Argonaute in alternative splicing. However, the molecular mechanism remains elusive. Here, we discuss the human nuclear RNAi mechanism in light of what is known of the yeast process.


Asunto(s)
Proteínas Argonautas/genética , Cromatina/metabolismo , Saccharomyces cerevisiae/metabolismo , Empalme Alternativo , Evolución Biológica , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Receptores de Hialuranos/genética , Interferencia de ARN , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/metabolismo
15.
PLoS One ; 8(6): e64880, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23762261

RESUMEN

Nuclear all-trans retinoic acid receptors (RARs) initiate early transcriptional events which engage pluripotent cells to differentiate into specific lineages. RAR-controlled transactivation depends mostly on agonist-induced structural transitions in RAR C-terminus (AF-2), thus bridging coactivators or corepressors to chromatin, hence controlling preinitiation complex assembly. However, the contribution of other domains of RAR to its overall transcriptional activity remains poorly defined. A proteomic characterization of nuclear proteins interacting with RAR regions distinct from the AF-2 revealed unsuspected functional properties of the RAR N-terminus. Indeed, mass spectrometry fingerprinting identified the Bromodomain-containing protein 4 (BRD4) and ALL1-fused gene from chromosome 9 (AF9/MLLT3), known to associate with and regulates the activity of Positive Transcription Elongation Factor b (P-TEFb), as novel RAR coactivators. In addition to promoter sequences, RAR binds to genomic, transcribed regions of retinoid-regulated genes, in association with RNA polymerase II and as a function of P-TEFb activity. Knockdown of either AF9 or BRD4 expression affected differentially the neural differentiation of stem cell-like P19 cells. Clusters of retinoid-regulated genes were selectively dependent on BRD4 and/or AF9 expression, which correlated with RAR association to transcribed regions. Thus RAR establishes physical and functional links with components of the elongation complex, enabling the rapid retinoid-induced induction of genes required for neuronal differentiation. Our data thereby extends the previously known RAR interactome from classical transcriptional modulators to components of the elongation machinery, and unravel a functional role of RAR in transcriptional elongation.


Asunto(s)
Diferenciación Celular , Proteínas Nucleares/metabolismo , Células Madre Pluripotentes/citología , Factor B de Elongación Transcripcional Positiva/metabolismo , Receptores de Ácido Retinoico/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Antineoplásicos/farmacología , Biomarcadores/metabolismo , Western Blotting , Proteínas de Ciclo Celular , Proliferación Celular , Inmunoprecipitación de Cromatina , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Células HeLa , Humanos , Inmunoprecipitación , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Factor B de Elongación Transcripcional Positiva/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Ácido Retinoico/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Tretinoina/farmacología
16.
Nat Struct Mol Biol ; 19(10): 998-1004, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22961379

RESUMEN

Argonaute proteins play a major part in transcriptional gene silencing in many organisms, but their role in the nucleus of somatic mammalian cells remains elusive. Here, we have immunopurified human Argonaute-1 and Argonaute-2 (AGO1 and AGO2) chromatin-embedded proteins and found them associated with chromatin modifiers and, notably, with splicing factors. Using the CD44 gene as a model, we show that AGO1 and AGO2 facilitate spliceosome recruitment and modulate RNA polymerase II elongation rate, thereby affecting alternative splicing. Proper AGO1 and AGO2 recruitment to CD44 transcribed regions required the endonuclease Dicer and the chromobox protein HP1γ, and resulted in increased histone H3 lysine 9 methylation on variant exons. Our data thus uncover a new model for the regulation of alternative splicing, in which Argonaute proteins couple RNA polymerase II elongation to chromatin modification.


Asunto(s)
Empalme Alternativo , Proteínas Argonautas/metabolismo , Cromatina/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Animales , Proteínas Argonautas/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Factores Eucarióticos de Iniciación/genética , Fibroblastos/fisiología , Células HeLa , Histonas/metabolismo , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Lisina/metabolismo , Metilación , Ratones , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Interferente Pequeño , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Empalmosomas/metabolismo
17.
Nat Struct Mol Biol ; 18(3): 337-44, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21358630

RESUMEN

Pre-messenger RNAs (pre-mRNAs) maturation is initiated cotranscriptionally. It is therefore conceivable that chromatin-borne information participates in alternative splicing. Here we find that elevated levels of trimethylation of histone H3 on Lys9 (H3K9me3) are a characteristic of the alternative exons of several genes including CD44. On this gene the chromodomain protein HP1γ, frequently defined as a transcriptional repressor, facilitates inclusion of the alternative exons via a mechanism involving decreased RNA polymerase II elongation rate. In addition, accumulation of HP1γ on the variant region of the CD44 gene stabilizes association of the pre-mRNA with the chromatin. Altogether, our data provide evidence for localized histone modifications impacting alternative splicing. They further implicate HP1γ as a possible bridging molecule between the chromatin and the maturating mRNA, with a general impact on splicing decisions.


Asunto(s)
Empalme Alternativo , Proteínas Cromosómicas no Histona/metabolismo , Exones , Histonas/metabolismo , Receptores de Hialuranos/genética , Lisina/metabolismo , Línea Celular , Células HeLa , Humanos , Metilación , ARN Polimerasa II/metabolismo , Precursores del ARN/metabolismo
18.
J Mol Biol ; 407(5): 647-60, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21333655

RESUMEN

Mammals possess five nucleosome assembly protein 1-like (NAP1L) proteins, with three of them being expressed exclusively in the nervous system. The biological importance of the neuron-specific NAP1L2 protein is demonstrated by the neural tube defects occurring during the embryonic development of Nap1l2 mutant mice, which are associated with an overproliferation of neural stem cells and decreased neuronal differentiation. NAP1L2 controls the expression of its target genes, such as the cell cycle regulator Cdkn1c, at least in part via an effect on histone acetylation. Using a two-hybrid analysis, we have identified several proteins interacting with NAP1L2, including the ubiquitously expressed members of the nucleosome assembly protein family, NAP1L1 and NAP1L4. Structural studies further predict that all five NAP1-like proteins are able to interact directly via their highly conserved α-helices. These elements, in conjunction with the coexpression of all the NAP1-like proteins in neurons and the finding that deletion of Nap1l2 affects the cytoplasmic-nuclear distribution patterns of both NAP1L1 and NAP1L4 and their recruitment to target genes, suggest that combinatorial variation within the NAP family may ensure adaptation to the specific requirements for neuronal differentiation such as intercellular repartition, chromatin modification, transcriptional regulation, or the recruitment of specific transcription factors.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Secuencia de Aminoácidos , Animales , Diferenciación Celular/fisiología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/fisiología , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteína 1 de Ensamblaje de Nucleosomas/química , Proteína 1 de Ensamblaje de Nucleosomas/genética , Unión Proteica , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Técnicas del Sistema de Dos Híbridos
19.
EMBO Rep ; 9(3): 267-72, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18239689

RESUMEN

The mammalian heterochromatin protein 1 (HP1) family of proteins was recently shown to be involved in transient repression of inducible promoters. One of these promoters is the HIV1 long terminal repeat, which, during viral latency, recruits a non-processive RNA polymerase II (RNAPII) that synthesizes a short regulatory transcript. Here, we have used this promoter to examine the interplay of HP1alpha, HP1beta and HP1gamma with RNAPII. We find that, in the absence of stimulation, HP1beta is present on the promoter together with the non-processive RNAPII and functions as a negative regulator. On activation, HP1beta bound to methylated H3K9 is rapidly released concurrent with histone H3 phospho-acetylation, and is replaced by HP1gamma. This isoform localizes to the promoter but also inside the coding region, together with the processive RNAPII. Our data show that HP1 recruitment-release is a sequential mechanism that is precisely regulated and highly dependent on transcription.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Regulación Viral de la Expresión Génica , Genes de Cambio , VIH-1/genética , Regiones Promotoras Genéticas/genética , Cromatina/metabolismo , Homólogo de la Proteína Chromobox 5 , Activación Enzimática , Células HeLa , Humanos , Células Jurkat , Transporte de Proteínas , ARN Polimerasa II/metabolismo , Secuencias Repetidas Terminales , Transcripción Genética
20.
J Biol Chem ; 281(29): 20338-48, 2006 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16723356

RESUMEN

Retinoic acid receptors (RARs) are the molecular relays of retinoid action on transcription, cellular differentiation and apoptosis. Transcriptional activation of retinoid-regulated promoters requires the dismissal of corepressors and the recruitment of coactivators to promoter-bound RAR. RARs recruit in vitro a plethora of coactivators whose actual contribution to retinoid-induced transcription is poorly characterized in vivo. Embryonal carcinoma P19 cells, which are highly sensitive to retinoids, were depleted from archetypical coactivators by RNAi. SRC1-deficient P19 cells showed severely compromised retinoid-induced responses, in agreement with the supposed role of SRC1 as a RAR coactivator. Unexpectedly, Med1/TRAP220/DRIP205-depleted cells exhibited an exacerbated response to retinoids, both in terms transcriptional responses and of cellular differentiation. Med1 depletion affected TFIIH and cdk9 detection at the prototypical retinoid-regulated RARbeta2 promoter, and favored a higher RNA polymerase II detection in transcribed regions of the RARbeta2 gene. Furthermore, the nature of the ligand impacted strongly on the ability of RARs to interact with a given coactivator and to activate transcription in intact cells. Thus RAR accomplishes transcriptional activation as a function of the ligand structure, by recruiting regulatory complexes which control distinct molecular events at retinoid-regulated promoters.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Endodesoxirribonucleasas/fisiología , Retinoides/farmacología , Factores de Transcripción/fisiología , Transcripción Genética/efectos de los fármacos , Animales , Línea Celular Tumoral , Clonación Molecular , Endodesoxirribonucleasas/deficiencia , Endodesoxirribonucleasas/genética , Eliminación de Gen , Genes Reporteros , Células HeLa , Histona Acetiltransferasas , Humanos , Cinética , Luciferasas/genética , Ratones , Modelos Biológicos , Coactivador 1 de Receptor Nuclear , Receptores de Ácido Retinoico/efectos de los fármacos , Receptores de Ácido Retinoico/fisiología , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA