Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35889358

RESUMEN

The aim of this work was to develop a simple and easy-to-apply model to predict the pH values of deep eutectic solvents (DESs) over a wide range of pH values that can be used in daily work. For this purpose, the pH values of 38 different DESs were measured (ranging from 0.36 to 9.31) and mathematically interpreted. To develop mathematical models, DESs were first numerically described using σ profiles generated with the COSMOtherm software. After the DESs' description, the following models were used: (i) multiple linear regression (MLR), (ii) piecewise linear regression (PLR), and (iii) artificial neural networks (ANNs) to link the experimental values with the descriptors. Both PLR and ANN were found to be applicable to predict the pH values of DESs with a very high goodness of fit (R2independent validation > 0.8600). Due to the good mathematical correlation of the experimental and predicted values, the σ profile generated with COSMOtherm could be used as a DES molecular descriptor for the prediction of their pH values.


Asunto(s)
Disolventes Eutécticos Profundos , Redes Neurales de la Computación , Concentración de Iones de Hidrógeno , Modelos Teóricos , Solventes/química
2.
Front Chem ; 12: 1436049, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148667

RESUMEN

Stabilized enzymes are crucial for the industrial application of biocatalysis due to their enhanced operational stability, which leads to prolonged enzyme activity, cost-efficiency and consequently scalability of biocatalytic processes. Over the past decade, numerous studies have demonstrated that deep eutectic solvents (DES) are excellent enzyme stabilizers. However, the search for an optimal DES has primarily relied on trial-and-error methods, lacking systematic exploration of DES structure-activity relationships. Therefore, this study aims to rationally design DES to stabilize various dehydrogenases through extensive experimental screening, followed by the development of a straightforward and reliable mathematical model to predict the efficacy of DES in enzyme stabilization. A total of 28 DES were tested for their ability to stabilize three dehydrogenases at 30°C: (S)-alcohol dehydrogenase from Rhodococcus ruber (ADH-A), (R)-alcohol dehydrogenase from Lactobacillus kefir (Lk-ADH) and glucose dehydrogenase from Bacillus megaterium (GDH). The residual activity of these enzymes in the presence of DES was quantified using first-order kinetic models. The screening revealed that DES based on polyols serve as promising stabilizing environments for the three tested dehydrogenases, particularly for the enzymes Lk-ADH and GDH, which are intrinsically unstable in aqueous environments. In glycerol-based DES, increases in enzyme half-life of up to 175-fold for Lk-ADH and 60-fold for GDH were observed compared to reference buffers. Furthermore, to establish the relationship between the enzyme inactivation rate constants and DES descriptors generated by the Conductor-like Screening Model for Real Solvents, artificial neural network models were developed. The models for ADH-A and GDH showed high efficiency and reliability (R2 > 0.75) for in silico screening of the enzyme inactivation rate constants based on DES descriptors. In conclusion, these results highlight the significant potential of the integrated experimental and in silico approach for the rational design of DES tailored to stabilize enzymes.

3.
Bioengineering (Basel) ; 9(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36354575

RESUMEN

The most important and commonly used process for biodiesel synthesis is transesterification. The main by-product of biodiesel synthesis by transesterification is glycerol, which must be removed from the final product. Recently, deep eutectic solvent (DES) assisted extraction has been shown to be an effective and sustainable method for biodiesel purification. In this study, biodiesel was produced by lipase-catalysed transesterification from sunflower oil and methanol. A total of 12 different eutectic solvents were prepared and their physical properties were determined. Mathematical models were used to define which physical and chemical properties of DES and to what extent affect the efficiency of extraction of glycerol from the biodiesel. After initial screening, cholinium-based DES with ethylene glycol as hydrogen bond donor was selected and used for optimization of extraction process conditions performed in a microsystem. To determine the optimal process conditions (temperature, biodiesel:DES volume ratio, residence time), the experimental three-level-three-factor Box-Behnken experimental design was used. In the end, a combination of a mathematical model and experimental results was used to estimate how many micro-extractors are necessary for the complete removal of glycerol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA