Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Plant Foods Hum Nutr ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795268

RESUMEN

Mexican Coccoloba uvifera fruit contains polyphenols, flavonoids, and anthocyanins, while in the leaves, lupeol, α- and ß-amyrin have been previously identified by HPLC. However, the low resolution by HPLC of pentacyclic triterpenes (PTs) is a limitation. Moreover, the volatile profile of C. uvifera fruit is still unknown. Therefore, this study aimed to identify PTs in C. uvifera leaf and fruit extracts by CG-MS analysis and to determine the volatile profile of C. uvifera pulp by headspace solid-phase microextraction. The results showed trimethylsilylated compounds of standards lupeol, α- and ß-amyrin, indicating that the silylation reaction was suitable. These trimethylsilylated compounds were identified in leaf and fruit extracts. The fruit volatile profile revealed the presence of 278 esters, 20 terpenes, 9 aldehydes, 5 alcohols, and 4 ketones. The fruit showed a high content of esters and terpenes. Due to their flavour properties, esters are essential for the food, cosmetics, and pharmaceutics industries. Moreover, terpenes in the fruit, such as menthone, ß-elemene, junipene, and ß-caryophyllene have the potential as anticancer and phytopathogen agents. The results indicated that GC-MS is an alternative to HPLC approaches for identifying PTs. Besides, identifying volatile compounds in the fruit will increase the value of this plant and expand its application. Identifying PTs and volatile compounds in Mexican C. uvifera leads to a better understanding of the potential benefits of this plant. This would increase the consumption of Mexican C. uvifera fresh or as functional ingredients in nutraceutical or pharmaceutical products.

2.
Biotechnol Appl Biochem ; 69(1): 198-208, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33459401

RESUMEN

The objective of this work was to evaluate the biochemical characteristics of an enzymatic extract obtained from autochthonous fungus Aspergillus niger ITV02 and its application in the enzymatic hydrolysis of wheat straw and corn stubble pretreated by steam explosion. The enzymatic extract was obtained by submerged fermentation using delignified sweet sorghum bagasse as a carbon source. The results obtained showed that the enzymatic extract had ß-glucosidase and endoglucanase activities. The effects of pH and temperature on cellulase activity were evaluated and its thermostability was determined. The optimal parameters of the ß-glucosidase and endoglucanase activities obtained were pH 5 and 70 °C. The enzymatic extract of A. niger ITV02 was used to hydrolyze wheat straw and corn stubble, and the hydrolysis yields were compared with those obtained by a commercial cellulase (Celluclast 1.5L NS 50013) and CellicCTec3. The results showed that with the use the mixture of Celluclast 1.5L-A. niger ITV02 and CellicCTec3-A. niger ITV02 in the hydrolysis, conversions of 86.36% and 67.8% were obtained, respectively. Glucose production for the mixture extract increased 2.15 times more than when the enzyme was used independently alone. The present work shows that A. niger ITV02 has a potential as an enzyme producer for lignocellulosic hydrolysis.


Asunto(s)
Celulasa , Aspergillus niger/metabolismo , Biomasa , Celulasa/metabolismo , Fermentación , Hidrólisis , Lignina
3.
Chem Biodivers ; 19(11): e202200806, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36224743

RESUMEN

This study aimed to microencapsulate the sea grape ethanolic extract by the spray drying process, characterizing the obtained powder, and evaluating its antimutagenicity activity. Microparticles showed a mean size of 6.28 µm and a spherical shape with a smooth surface. The powder had a low moisture content (4.02±0.92 %) and water activity (0.27±0.01), and high solubility (76±3.60 %). Moreover, hygroscopicity (14.75±2.63 g/100 g of powder) and bulk density (0.63±0.03 g/cm3 ) values suggested that this powder can be easily handled at a pilot or industrial scale. In addition, microencapsulation protected the extract against oxidation by ultraviolet light, improved its thermal stability, and its antimutagenicity activity was similar to fresh sea grape extract. In conclusion, the microencapsulation with maltodextrin by spray drying technique is an alternative to protect bioactive compounds from sea grapes against environmental conditions, maintaining their antimutagenic activity.


Asunto(s)
Composición de Medicamentos , Polygonaceae , Fenoles/farmacología , Extractos Vegetales/farmacología , Polygonaceae/química , Polvos , Composición de Medicamentos/métodos
4.
J Sci Food Agric ; 102(2): 696-706, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34173241

RESUMEN

BACKGROUND: Microorganism for biological control of fruit diseases is an eco-friendly alternative to the use of chemical fungicides. RESULTS: This is the first study evaluating the electrospraying process to encapsulate the biocontrol yeast Meyerozyma caribbica. The effect of encapsulating material [Wey protein concentrate (WPC), Fibersol® and Trehalose], its concentration and storage temperature on the cell viability of M. caribbica, and in vitro and in vivo control of Colletotrichum gloeosporioides was evaluated. The processing with commercial resistant maltodextrin (Fibersol®) 30% (w/v) as encapsulating material showed the highest initial cell viability (95.97 ± 1.01%). The storage at 4 ± 1 °C showed lower losses of viability compared to 25 ± 1 °C. Finally, the encapsulated yeast with Fibersol 30% w/v showed inhibitory activity against anthracnose in the in vitro and in vivo tests, similar to yeast fresh cells. CONCLUSION: Electrospraying was a highly efficient process due to the high cell viability, and consequently, a low quantity of capsules is required for the postharvest treatment of fruits. Additionally, the yeast retained its antagonistic power during storage. © 2021 Society of Chemical Industry.


Asunto(s)
Agentes de Control Biológico/química , Agentes de Control Biológico/farmacología , Carica/microbiología , Colletotrichum/efectos de los fármacos , Composición de Medicamentos/métodos , Mangifera/microbiología , Saccharomycetales/química , Antibiosis , Colletotrichum/crecimiento & desarrollo , Composición de Medicamentos/instrumentación , Frutas/microbiología , Viabilidad Microbiana , Saccharomycetales/fisiología
5.
Biotechnol Lett ; 42(11): 2271-2283, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32533374

RESUMEN

OBJECTIVES: To evaluate a strain of Fusarium verticillioides ITV03 isolated from wood residues in the Veracruz region of Mexico. Endoglucanase and ß-glucosidase production by submerged fermentation was optimized using a Box-Behnken design, where the independent variables were urea, ammonium sulfate and yeast extract. RESULTS: After optimization, an endoglucanase activity of 0.27 U/mL was achieved; subsequently, three carbon sources were evaluated (carboxymethyl cellulose, sweet sorghum bagasse cellulose and delignified sweet sorghum bagasse (DSSB). The results showed that DSSB yielded the greatest endoglucanase (0.28 U/mL) and ß-glucosidase (0.12 U/mL) activities. Both enzymatic activities were characterized for the effect of pH, temperature and thermostability. The optimal parameters of ß-glucosidase and endoglucanase activity were pH 5 and 4 respectively, the optimum temperature 60 °C. These enzymes were stable at 50 °C for 150.68 h and 8.54 h, with an activation energy (Ea(day)) of 265.55 kJ/mol and 44.40 kJ/mol respectively, for ß-glucosidase and endoglucanase. CONCLUSION: The present work shows that a native strain like F. verticillioides ITV03 using DSSB supplemented with nitrogen has a great potential as a producer of cellulase for lignocellulosic residue hydrolysis.


Asunto(s)
Celulosa/química , Endo-1,4-beta Xilanasas/metabolismo , Fusarium/crecimiento & desarrollo , Sorghum/química , beta-Glucosidasa/metabolismo , Medios de Cultivo/química , Estabilidad de Enzimas , Fermentación , Proteínas Fúngicas/metabolismo , Fusarium/enzimología , Fusarium/aislamiento & purificación , Calor , Concentración de Iones de Hidrógeno , México , Nitrógeno/química , Madera/microbiología
6.
J Food Sci Technol ; 57(2): 663-672, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32116375

RESUMEN

Spray drying represents a viable alternative for the stabilization of juice and extract of a great diversity of plant in tropical zones, such as jackfruit from Nayarit, Mexico. The jackfruit powder allows physicochemical and microbiological stability for storage, transportation, and marketing. In addition, this allows expansion of consumption and use of these exotic tropical fruits. The aim of this work was to find the best enzymatic hydrolysis and spray drying treatment for obtaining jackfruit pulp and juice in powder without affecting its rheological and physicochemical properties. Jackfruit pulp was treated with three commercial enzymes and their mixtures, and the best treatment was then optimized by Response Surface Methodology. The jackfruit pulp and the hydrolyzed juice were spray dried using maltodextrin as a carrier agent. The best hydrolysis was obtained with Celluzyme® and Pectinex Ultra Pulp® and the optimal conditions were 1% of enzyme concentration, during 3 h at 37 °C (p = 0.92), that leads reducing sugar of 78.50 ± 1.93 mg mL-1 and viscosity of 7.94 ± 0.82 cps (94.7% reduction). The enzyme concentration is a direct function of reducing sugars content, while incubation time is an inverse function of viscosity. The spray drying treatment with the highest yield (74%) without affecting rheological and physicochemical properties compared to the fresh hydrolyzed juice was the treatment with 50% (TSS/weight) maltodextrin.

7.
J Food Sci Technol ; 56(10): 4625-4631, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31686694

RESUMEN

High biological value compounds are very important in the food and pharmaceutical sectors. The leading research interests are seeking efficient methods for extracting these substances. The objective of this study was to evaluate different extraction methods to obtain mangiferin and lupeol at preparative scale from leaves and bark of mango tree varieties Ataulfo and Autochthonous from Nayarit, Mexico. Four extraction techniques were evaluated such as maceration, Soxhlet, sonication (UAE) and microwave (MAE). Sonication gave the highest concentration of mangiferin and lupeol, demonstrating that extraction assisted by ultrasound could be an effective alternative to conventional extraction techniques because it is a low cost, simple and reliable process. Finally, mangiferin and lupeol were obtained at preparative scale with a higher concentration of bioactive compounds, 1.45 g 100 g-1 y 0.92 mg 100 g-1 sample on (d.b.), respectively. The barks from Ataulfo and Autochthonous mango trees turned out to be favourable sources for obtaining mangiferin and lupeol.

8.
Molecules ; 20(6): 11373-86, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26102070

RESUMEN

In the present study, wheat water extractable arabinoxylans (WEAX) were isolated and characterized, and their capability to form covalently cross-linked films in presence of Debaryomyces hansenii was evaluated. WEAX presented an arabinose to xylose ratio of 0.60, a ferulic acid and diferulic acid content of 2.1 and 0.04 µg∙mg(-1) WEAX, respectively and a Fourier Transform Infra-Red (FT-IR) spectrum typical of WEAX. The intrinsic viscosity and viscosimetric molecular weight values for WEAX were 3.6 dL∙g(-1) and 440 kDa, respectively. The gelation of WEAX (1% w/v) with and without D. hansenii (1 × 10(7) CFU∙cm(-2)) was rheologically investigated by small amplitude oscillatory shear. The entrapment of D. hansenii decreased gel elasticity from 1.4 to 0.3 Pa, probably by affecting the physical interactions between WEAX chains. Covalently cross-linked WEAX films containing D. hansenii were prepared by casting. Scanning electron microscopy images show that WEAX films containing D. hansenii were porous and consisted of granular-like and fibre microstructures. Average tensile strength, elongation at break and Young's modulus values dropped when D. hansenii was present in the film. Covalently cross-lined WEAX containing D. hansenii could be a suitable as a functional entrapping film.


Asunto(s)
Debaryomyces/química , Geles/química , Triticum/química , Xilanos/química , Arabinosa/química , Ácidos Cumáricos/química , Extractos Vegetales/química , Reología , Agua/química , Xilanos/farmacología , Xilosa/química
9.
ScientificWorldJournal ; 2014: 163174, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25506606

RESUMEN

Blackberry (Rubus sp.) juice was fermented using four different strains of Saccharomyces cerevisiae (Vitilevure-CM4457, Enoferm-T306, ICV-K1, and Greroche Rhona-L3574) recognized because of their use in the wine industry. A medium alcoholic graduation spirit (<6°GL) with potential to be produced at an industrial scale was obtained. Alcoholic fermentations were performed at 28°C, 200 rpm, and noncontrolled pH. The synergistic effect on the aromatic compounds production during fermentation in mixed culture was compared with those obtained by monoculture and physic mixture of spirits produced in monoculture. The aromatic composition was determined by HS-SPME-GC. The differences in aromatic profile principally rely on the proportions in aromatic compounds and not on the number of those compounds. The multivariance analysis, principal component analysis (PCA), and factorial discriminant analysis (DFA) permit to demonstrate the synergism between the strains.


Asunto(s)
Bebidas , Hidrocarburos Aromáticos/metabolismo , Rubus/química , Saccharomyces cerevisiae/metabolismo , Análisis Discriminante , Análisis de Componente Principal , Compuestos Orgánicos Volátiles/metabolismo
10.
Pest Manag Sci ; 80(7): 3459-3469, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38415946

RESUMEN

BACKGROUND: Anthracnose caused by species of Colletotrichum is the most important disease of avocado fruit. The quiescent infection develops in the field, hence, its control from the preharvest stage is necessary. The field application of microencapsulated Yamadazyma mexicana LPa14 could prevent the establishment of Colletotrichum gloeosporioides and reduce the losses in avocado production. This study aimed to evaluate the effectiveness of microencapsulated Y. mexicana applied in the field and postharvest for the anthracnose control in avocado, to evaluate the population dynamics of Y. mexicana in flowers and fruits and the effect of the yeast on the avocado quality. RESULTS: The concentrations of microencapsulated Y. mexicana after field application ranged from 4.58 to 6.35 log CFU g-1. The population of microencapsulated yeast in flowers and fruits was always higher than treatments with fresh cells. Preharvest application of fresh and microencapsulated Y. mexicana significantly reduced the severity of anthracnose by 71-80% and 84-96%, respectively, in avocado fruits stored at 25 °C. Moreover, at 6 °C and ripening at 25 °C, the fresh yeast reduced the severity by 87-90% and the microencapsulated yeast by 91-93%. However, yeast treatments applied in the field + postharvest under cool conditions were more effective in reducing 100% of anthracnose. Treatments did not negatively affect the quality parameters of the avocado fruits. CONCLUSION: Yamadazyma mexicana microencapsulated by electrospraying is a promising bioformulation for the management of anthracnose in avocados at preharvest and postharvest levels. Yamadazyma mexicana offers a new biological control solution for growers in avocado orchards. © 2024 Society of Chemical Industry.


Asunto(s)
Colletotrichum , Frutas , Persea , Enfermedades de las Plantas , Persea/microbiología , Colletotrichum/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Frutas/microbiología , Flores/microbiología , Control Biológico de Vectores
11.
Food Res Int ; 178: 113970, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309916

RESUMEN

Yam bean is an important source of dietary fiber and other components that comprise the total indigestible fraction (TIF), which can be fermented by the colonic microbiota and produce metabolites with beneficial health effects. Therefore, the objective of this study was to evaluate the in vitro colonic fermentation of yam bean TIF and the changes caused by the addition of a polyphenolic extract of mango seed and the lactic acid bacteria Pediococcus acidilactici. The mango seed extract was obtained by ultrasound-assisted extraction, and the microbial growth rate and viability of P. acidilactici were determined using a Neubauer chamber. Yam bean TIF was isolated by triple enzymatic hydrolysis and subjected to in vitro colonic fermentation in combination with treatments with mango seed extract and P. acidilactici suspensions. Changes in pH, total soluble phenols (TSP), and antioxidant capacity (AOX) were evaluated. Furthermore, the production of metabolites was quantified by HPLC-DAD-MS and GC-MS. The Growth rate of P. acidilactici was 0.1097 h-1 with 97.5 % viability at 7 h of incubation. All TIF treatments showed a high capacity of fermentation, and the addition of mango seed extract increased the TSP content and AOX in DPPH and FRAP assays. A total of Forty-six volatile metabolites were detected, with highlighting the presence of esters, benzenes, aldehydes, and short-chain fatty acids. Five phenolic compounds associated with mango by-products were quantified during all fermentation process, despite the concentration of the extract. P. acidilactici did not substantially modify the fermentative profile of TIF. However, further studies such as the evaluation of the abundance of microbial communities may be necessary to observe whether it can generate changes during colonic fermentation.


Asunto(s)
Mangifera , Pachyrhizus , Pediococcus acidilactici , Polifenoles/farmacología , Fermentación , Mangifera/química , Fenoles/análisis , Semillas/química , Extractos Vegetales/farmacología
12.
J Microbiol Methods ; 204: 106651, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36503054

RESUMEN

A new standardized method, using isothermal microcalorimetry (IMC), was established to determine thermokinetic parameters from heat flow curves and to demonstrate the reproducibility and repeatability of the parameters of five Colletotrichum species on different days. Measurements on IMC were made at different periods and by two operators. Repeatability and reproducibility (R&R) measurement system analysis was performed on the technique used to measure the heat flow of Colletotrichum strains. The results showed that the %GageR&R was found to be within the acceptable ranges of a measurement system. Also, the parameters obtained from the curves were subjected to a combination of Principal Component Analysis (PCA) and Clustering, the data showed that the total heat (Ht) and maximum growth rate (µmax) are probably the most specific distinguishing characteristic of the strains evaluated in this study. This study demonstrates, for the first time, the usefulness of IMC in obtaining heat flow curves and thermokinetic parameters, providing repeatable and reproducible measurements over a period and under controlled conditions, for future identifications of phytopathogenic fungi.


Asunto(s)
Colletotrichum , Reproducibilidad de los Resultados , Calorimetría/métodos , Calor
13.
Int J Food Microbiol ; 399: 110255, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37210954

RESUMEN

High hydrostatic pressure (HHP) is a non-thermal process widely used in the food industry to reduce microbial populations. However, rarely its effect has been assessed in products with high oil content. This study evaluated the efficacy of HHP (200, 250, and 300 MPa) at different temperatures (25, 35, and 45 °C) by cycles (1, 2, or 3) of 10 min in the inactivation of Aspergillus niger spores in a lipid emulsion. After treatments at 300 MPa for 1 cycle at 35 or 45 °C, no surviving spores were recovered. All treatments were modeled by the linear and Weibull models. The presence of shoulders and tails in the treatments at 300 MPa at 35 or 45 °C resulted in sigmoidal curves which cannot be described by the linear model, hence the Weibull + Tail, Shoulder + Log-lin + Tail, and double Weibull models were evaluated to elucidate the inactivation kinetics. The tailing formation could be related to the presence of resistance subpopulations. The double Weibull model showed better goodness of fit (RMSE <0.2) to describe the inactivation kinetics of the treatments with the higher spore reductions. HHP at 200-300 MPa and 25 °C did not reduce the Aspergillus niger spores. The combined HHP and mild temperatures (35-45 °C) favored fungal spore inactivation. Spore inactivation in lipid emulsions by HHP did not follow a linear inactivation. HHP at mild temperatures is an alternative to the thermal process in lipid emulsions.


Asunto(s)
Aspergillus niger , Microbiología de Alimentos , Emulsiones/farmacología , Presión Hidrostática , Esporas Fúngicas , Lípidos , Esporas Bacterianas , Calor
14.
Biology (Basel) ; 12(5)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37237565

RESUMEN

Since the fruits of Bromelia pinguin and Bromelia karatas are rich in proteases, the aim of this research was to optimize the hydrolysis process of cooked white shrimp by-products due to the effect of these proteases. A robust Taguchi L16' design was used to optimize the hydrolysis process. Similarly, the amino acid profile by GC-MS and antioxidant capacity (ABTS and FRAP) were determined. The optimal conditions for hydrolysis of cooked shrimp by-products were pH 8.0, 30 °C, 0.5 h, 1 g of substrate and 100 µg/mL of B. karatas, pH 7.5, 40 °C, 0.5 h, 0.5 g substrate and 100 µg/mL enzyme extract from B. pinguin and pH 7.0, 37 °C, 1 h, 1.5 g substrate and 100 µg/mL enzyme bromelain. The optimized hydrolyzates of B. karatas B. pinguin and bromelain had 8 essential amino acids in their composition. The evaluation of the antioxidant capacity of the hydrolyzates under optimal conditions showed more than 80% inhibition of in ABTS radical, B. karatas hydrolyzates had better higher ferric ion reduction capacity with 10.09 ± 0.02 mM TE/mL. Finally, the use of proteolytic extracts from B. pinguin and B. karatas to optimize hydrolysis process allowed obtaining hydrolyzates of cooked shrimp by-products with potential antioxidant capacity.

15.
J Microbiol Methods ; 195: 106457, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35367278

RESUMEN

Conventional microbiological methods to evaluate the in vitro antifungal activity of bioactive compounds usually consume a long time. It is also difficult to calculate different kinetic parameters. For this reason, this study aimed to evaluate the sensitivity of phytopathogenic fungi to an ethanolic extract of jackfruit leaf by the poison agar and isothermal microcalorimetry (IMC) tests. The kinetic parameters (maximum growth rate (µMax), total heat (ϕMax), time to peak (T1), and lag (λ) phase) varied by fungal isolate. However, the results indicated a reduction of the total heat produced from the fungi at 5 mg/mL of the extract referred to as the control without extract (p < 0.05). Pearson coefficients were established to determine the relationship between both techniques. Correlations demonstrated that the λ phase and µMax are highly related (> 0.51) to the in vitro percentage inhibition. Therefore, this study contributes to the use of the IMC as an alternative to complement the classical methods of fungal inhibition, providing data in real-time.


Asunto(s)
Artocarpus , Artocarpus/química , Etanol/análisis , Frutas/química , Hongos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química
16.
Nanomaterials (Basel) ; 12(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35159843

RESUMEN

The electrospinnability of FucoPol, a bacterial exopolysaccharide, is presented for the first time, evaluated alone and in combination with other polymers, such as polyethylene oxide (PEO) and pullulan. The obtained fibers were characterized in terms of their morphological, structural and thermal properties. Pure FucoPol fibers could not be obtained due to FucoPol's low water solubility and a lack of molecular entanglements. Nanofibers were obtained via blending with PEO and pullulan. FucoPol:PEO (1:3 w/w) showed fibers with well-defined cylindrical structure, since the higher molecular weight of PEO helps the continuity of the erupted jet towards the collector, forming stable fibers. WAXS, DSC and TGA showed that FucoPol is an amorphous biopolymer, stable until 220 °C, whereas FucoPol-PEO fibers were stable until 140 °C, and FucoPol:pullulan fibers were stable until 130 °C. Interestingly, blended components influenced one another in intermolecular order, since new peaks associated to intermolecular hierarchical assemblies were seen by WAXS. These results make FucoPol-based systems viable candidates for production of nanofibers for packaging, agriculture, biomedicine, pharmacy and cosmetic applications.

17.
Polymers (Basel) ; 13(19)2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34641086

RESUMEN

Global demand for minimally processed fruits and vegetables is increasing due to the tendency to acquire a healthy lifestyle. Losses of these foods during the chain supply reach as much as 30%; reducing them represents a challenge for the industry and scientific sectors. The use of edible packaging based on biopolymers is an alternative to mitigate the negative impact of conventional films and coatings on environmental and human health. Moreover, it has been demonstrated that natural coatings added with functional compounds reduce the post-harvest losses of fruits and vegetables without altering their sensorial and nutritive properties. Furthermore, the enhancement of their mechanical, structural, and barrier properties can be achieved through mixing two or more biopolymers to form composite coatings and adding plasticizers and/or cross-linking agents. This review shows the latest updates, tendencies, and challenges in the food industry to develop eco-friendly food packaging from diverse natural sources, added with bioactive compounds, and their effect on perishable foods. Moreover, the methods used in the food industry and the new techniques used to coat foods such as electrospinning and electrospraying are also discussed. Finally, the tendency and challenges in the development of edible films and coatings for fresh foods are reviewed.

18.
Food Sci Biotechnol ; 30(13): 1695-1707, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34925944

RESUMEN

The Artocarpus heterophyllus extracts are receiving attention due to their agro-food applications. Then, the simultaneous optimization of microwave-assisted extraction of polyphenols from jackfruit leaf with growth inhibitory action against Alternaria sp. was studied. The effects of power and time on total soluble polyphenols and total flavonoids contents, and antifungal activity were investigated using response surface methodology. Temperature behavior was considered also. Models showed good prediction and successfully validation. Treatment at 840 W and 2 min allowed the responses maximization (148.75 mg galic acid equivalent /g dried weight of total soluble polyphenols, 13.28 mg rutin equivalent /g dried weight of total flavonoids, and 39.9% of antifungal activity). Furthermore, high ABTS+ (97%) and DPPH (92%) inhibition was exhibited, as a function of the polyphenol's concentration and composition. Mainly flavonoids with potential antioxidant and antifungal properties were detected. These findings suggest the potentialities of these extracts for Alternaria sp. control during tomato postharvest.

19.
Food Chem X ; 12: 100138, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-34693274

RESUMEN

This study aimed to evaluate the encapsulating potential of a jackfruit leaf protein hydrolysate, through obtaining pentacyclic triterpenes-rich extract loaded nanoemulsion. Response surface methodology (RSM) was used to optimize the conditions to obtain an optimal nanoemulsion (NE-Opt). The effect of protein hydrolysate concentration (0.5-2%), oil loaded with extract (2.5-7.5%), and ultrasound time (5-15 min) on the polydispersity index (PDI) and droplet size of the emulsion (D[3,2] and D[4,3]) was evaluated. RSM revealed that 1.25% protein hydrolysate, 2.5% oil, and ultrasound time of 15 min produced the NE-Opt with the lowest PDI (0.85), D[3,2] (330 nm), and D[4,3] (360 nm). Encapsulation efficiency and extract loading of the NE-Opt was of 40.15 ± 1.46 and 18.03 ± 2.78% respectively. The NE-Opt was relatively stable during storage (at 4 and 25 °C), pH, temperature, and ionic strength. Then, the protein hydrolysate could be used as an alternative to conventional emulsifiers.

20.
Food Chem X ; 12: 100170, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-34877530

RESUMEN

Jackfruit (Artocarpus heterophyllus Lam.) is an evergreen tree that produces a high waste of leaves. This study evaluated the obtention of peptides from jackfruit leaves using pancreatin and pepsin, their antifungal activity, and their effect on pectin films. The protein content was 7.64 ± 0.12 g/100 g of jackfruit fresh leaves. Pancreatin produced a higher yield than pepsin in the obtention of peptides (p ≤ 0.05). However, peptides obtained after 2 h by pepsin hydrolysis (Pep-P) had six essential amino acids and inhibited > 99% of mycelial growth and spore germination of Colletotrichum gloeosporioides. Pectin films with Pep-P showed a slight brown color, lower thickness, water vapor permeability, and moisture content, as well as higher thermal stability and better inhibition properties against C. gloeosporioides than pectin films without Pep-P (p ≤ 0.05). Pectin films added with Pep-P from jackfruit leaf could be a green alternative to anthracnose control in tropical fruits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA