RESUMEN
Low-field (LF) MRI promises soft-tissue imaging without the expensive, immobile magnets of clinical scanners but generally suffers from limited detection sensitivity and contrast. The sensitivity boost provided by hyperpolarization can thus be highly synergistic with LF MRI. Initial efforts to integrate a continuous-bubbling SABRE (signal amplification by reversible exchange) hyperpolarization setup with a portable, point-of-care 64 mT clinical MRI scanner are reported. Results from 1H SABRE MRI of pyrazine and nicotinamide are compared with those of benchtop NMR spectroscopy. Comparison with MRI signals from samples with known H2O/D2O ratios allowed quantification of the SABRE enhancements of imaged samples with various substrate concentrations (down to 3 mM). Respective limits of detection and quantification of 3.3 and 10.1 mM were determined with pyrazine 1H polarization (PH) enhancements of â¼1900 (PH â¼0.04%), supporting ongoing and envisioned efforts to realize SABRE-enabled MRI-based molecular imaging.
Asunto(s)
Imagen por Resonancia Magnética , Imagen Molecular , Niacinamida , Sistemas de Atención de Punto , Pirazinas , Niacinamida/química , Imagen Molecular/métodos , Pirazinas/química , HumanosRESUMEN
PURPOSE: Perfusion MRI reveals important tumor physiological and pathophysiologic information, making it a critical component in managing brain tumor patients. This study aimed to develop a dual-echo 3D spiral technique with a single-bolus scheme to simultaneously acquire both dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) data and overcome the limitations of current EPI-based techniques. METHODS: A 3D spiral-based technique with dual-echo acquisition was implemented and optimized on a 3T MRI scanner with a spiral staircase trajectory and through-plane SENSE acceleration for improved speed and image quality, in-plane variable-density undersampling combined with a sliding-window acquisition and reconstruction approach for increased speed, and an advanced iterative deblurring algorithm. Four volunteers were scanned and compared with the standard of care (SOC) single-echo EPI and a dual-echo EPI technique. Two patients were scanned with the spiral technique during a preload bolus and compared with the SOC single-echo EPI collected during the second bolus injection. RESULTS: Volunteer data demonstrated that the spiral technique achieved high image quality, reduced geometric artifacts, and high temporal SNR compared with both single-echo and dual-echo EPI. Patient perfusion data showed that the spiral acquisition achieved accurate DSC quantification comparable to SOC single-echo dual-dose EPI, with the additional DCE information. CONCLUSION: A 3D dual-echo spiral technique was developed to simultaneously acquire both DSC and DCE data in a single-bolus injection with reduced contrast use. Preliminary volunteer and patient data demonstrated increased temporal SNR, reduced geometric artifacts, and accurate perfusion quantification, suggesting a competitive alternative to SOC-EPI techniques for brain perfusion MRI.
Asunto(s)
Algoritmos , Neoplasias Encefálicas , Encéfalo , Medios de Contraste , Imagenología Tridimensional , Humanos , Imagenología Tridimensional/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos , Artefactos , Masculino , Femenino , Adulto , Procesamiento de Imagen Asistido por Computador/métodos , Relación Señal-Ruido , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodosRESUMEN
PURPOSE: Software has a substantial impact on quantitative perfusion MRI values. The lack of generally accepted implementations, code sharing and transparent testing reduces reproducibility, hindering the use of perfusion MRI in clinical trials. To address these issues, the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI) aimed to establish a community-led, centralized repository for sharing open-source code for processing contrast-based perfusion imaging, incorporating an open-source testing framework. METHODS: A repository was established on the OSIPI GitHub website. Python was chosen as the target software language. Calls for code contributions were made to OSIPI members, the ISMRM Perfusion Study Group, and publicly via OSIPI websites. An automated unit-testing framework was implemented to evaluate the output of code contributions, including visual representation of the results. RESULTS: The repository hosts 86 implementations of perfusion processing steps contributed by 12 individuals or teams. These cover all core aspects of DCE- and DSC-MRI processing, including multiple implementations of the same functionality. Tests were developed for 52 implementations, covering five analysis steps. For T1 mapping, signal-to-concentration conversion and population AIF functions, different implementations resulted in near-identical output values. For the five pharmacokinetic models tested (Tofts, extended Tofts-Kety, Patlak, two-compartment exchange, and two-compartment uptake), differences in output parameters were observed between contributions. CONCLUSIONS: The OSIPI DCE-DSC code repository represents a novel community-led model for code sharing and testing. The repository facilitates the re-use of existing code and the benchmarking of new code, promoting enhanced reproducibility in quantitative perfusion imaging.
Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Humanos , Medios de Contraste/farmacocinética , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Perfusión , Imagen de Perfusión/métodosRESUMEN
PURPOSE: The purpose of this study was to develop a spiral-based combined spin- and gradient-echo (spiral-SAGE) method for simultaneous dynamic contrast-enhanced (DCE-MRI) and dynamic susceptibility contrast MRI (DSC-MRI). METHODS: Using this sequence, we obtained gradient-echo TEs of 1.69 and 26 ms, a SE TE of 87.72 ms, with a TR of 1663 ms. Using an iterative SENSE reconstruction followed by deblurring, spiral-induced image artifacts were minimized. Healthy volunteer images are shown to demonstrate image quality using the optimized reconstruction, as well as for comparison with EPI-based SAGE. A bioreactor phantom was used to compare dynamic-contrast time courses with both spiral-SAGE and EPI-SAGE. A proof-of-concept cohort of patients with brain tumors shows the range of hemodynamic maps available using spiral-SAGE. RESULTS: Comparison of spiral-SAGE images with conventional EPI-SAGE images illustrates substantial reductions of image distortion and artifactual image intensity variations. Bioreactor phantom data show similar dynamic contrast time courses between standard EPI-SAGE and spiral-SAGE for the second and third echoes, whereas first-echo data show improvements in quantifying T1 changes with shorter echo times. In a cohort of patients with brain tumors, spiral-SAGE-based perfusion and permeability maps are shown with comparison with the standard single-echo EPI perfusion map. CONCLUSION: Spiral-SAGE provides a substantial improvement for the assessment of perfusion and permeability by mitigating artifacts typically encountered with EPI and by providing a shorter echo time for improved characterization of permeability. Spiral-SAGE enables quantification of perfusion, permeability, and vessel architectural parameters, as demonstrated in brain tumors.
Asunto(s)
Neoplasias Encefálicas , Medios de Contraste , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Imagen Eco-Planar , Humanos , Imagen por Resonancia Magnética , NeuroimagenRESUMEN
PURPOSE: To explore the extent of bias in cerebrospinal fluid flow estimates due to radiofrequency saturation, and its possible impact on the use of two-dimensional cine phase contrast magnetic resonance imaging in the diagnosis and characterization of normal pressure hydrocephalus in patients. THEORY AND METHODS: Theoretical signal equations were generated to describe saturation dependence on velocity. An experimental set of phase contrast magnetic resonance imaging scans with two different flip angles was used to show bias in flow estimates in a flow phantom, and in six different healthy volunteers. The cerebral aqueduct was targeted as the flow region of interest. RESULTS: Data from a constant flow phantom showed a spatial distribution of voxels with significant bias in flow at the periphery of the flow region. The velocity difference (bias) maps of the cerebral aqueduct correlated with the spatial velocity gradients around peak systole and peak diastole, and high correlation with temporal velocity gradients during transition between systole and diastole. The aqueductal stroke volume for θ = 30° were found to be significantly higher than for θ = 10° using a Wilcoxon signed rank test. CONCLUSION: This work shows the extent of bias in cerebrospinal fluid flow quantification due to radiofrequency saturation effects. This clinical relevance of this error was presented with respect to shunt responsiveness among normal pressure hydrocephalus patients. Magn Reson Med 79:2067-2076, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Asunto(s)
Encéfalo/diagnóstico por imagen , Acueducto del Mesencéfalo/diagnóstico por imagen , Líquido Cefalorraquídeo , Hidrocéfalo Normotenso/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adulto , Ventrículos Cerebrales/diagnóstico por imagen , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Fantasmas de Imagen , Ondas de RadioRESUMEN
The purpose of this study was to optimize and validate a multi-contrast, multi-echo fMRI method using a combined spin- and gradient-echo (SAGE) acquisition. It was hypothesized that SAGE-based blood oxygen level-dependent (BOLD) functional MRI (fMRI) will improve sensitivity and spatial specificity while reducing signal dropout. SAGE-fMRI data were acquired with five echoes (2 gradient-echoes, 2 asymmetric spin-echoes, and 1 spin-echo) across 12 protocols with varying acceleration factors, and temporal SNR (tSNR) was assessed. The optimized protocol was then implemented in working memory and vision tasks in 15 healthy subjects. Task-based analysis was performed using individual echoes, quantitative dynamic relaxation times T2 * and T2, and echo time-dependent weighted combinations of dynamic signals. These methods were compared to determine the optimal analysis method for SAGE-fMRI. Implementation of a multiband factor of 2 and sensitivity encoding (SENSE) factor of 2.5 yielded adequate spatiotemporal resolution while minimizing artifacts and loss in tSNR. Higher BOLD contrast-to-noise ratio (CNR) and tSNR were observed for SAGE-fMRI relative to single-echo fMRI, especially in regions with large susceptibility effects and for T2-dominant analyses. Using a working memory task, the extent of activation was highest with T2 *-weighting, while smaller clusters were observed with quantitative T2 * and T2. SAGE-fMRI couples the high BOLD sensitivity from multi-gradient-echo acquisitions with improved spatial localization from spin-echo acquisitions, providing two contrasts for analysis. SAGE-fMRI provides substantial advantages, including improving CNR and tSNR for more accurate analysis.
RESUMEN
(1) Background: This work characterizes the sensitivity of magnetic resonance-based Relaxivity Contrast Imaging (RCI) to Amyotrophic Lateral Sclerosis (ALS)-induced changes in myofiber microstructure. Transverse Relaxivity at Tracer Equilibrium (TRATE), an RCI-based parameter, was evaluated in the lower extremities of ALS patients and healthy subjects. (2) Methods: In this IRB-approved study, 23 subjects (12 ALS patients and 11 healthy controls) were scanned at 3T (Philips, The Netherlands). RCI data were obtained during injection of a gadolinium-based contrast agent. TRATE, fat fraction and T2 measures, were compared in five muscle groups of the calf muscle, between ALS and control populations. TRATE was also evaluated longitudinally (baseline and 6 months) and was compared to clinical measures, namely ALS Functional Rating Scale (ALSFRS-R) and Hand-Held Dynamometry (HHD), in a subset of the ALS population. (3) Results: TRATE was significantly lower (p < 0.001) in ALS-affected muscle than in healthy muscle in all muscle groups. Fat fraction differences between ALS and healthy muscle were statistically significant for the tibialis anterior (p = 0.01), tibialis posterior (p = 0.004), and peroneus longus (p = 0.02) muscle groups but were not statistically significant for the medial (p = 0.07) and lateral gastrocnemius (p = 0.06) muscles. T2 differences between ALS and healthy muscle were statistically significant for the tibialis anterior (p = 0.004), peroneus longus (p = 0.004) and lateral gastrocnemius (p = 0.03) muscle groups but were not statistically significant for the tibialis posterior (p = 0.06) and medial gastrocnemius (p = 0.07) muscles. Longitudinally, TRATE, averaged over all patients, decreased by 28 ± 16% in the tibialis anterior, 47 ± 18% in the peroneus longus, 25 ± 19% in the tibialis posterior, 29 ± 14% in the medial gastrocnemius and 35 ± 18% in the lateral gastrocnemius muscles between two timepoints. ALSFRS-R scores were stable in two of four ALS patients. HHD scores decreased in three of four ALS patients. (4) Conclusion: RCI-based TRATE was shown to consistently differentiate ALS-affected muscle from healthy muscle and also provide a quantitative measure of longitudinal muscle degeneration.