Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Physiol ; 239(2): e31185, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219050

RESUMEN

Angiogenesis is a complex process that involves the expansion of the pre-existing vascular plexus to enhance oxygen and nutrient delivery and is stimulated by various factors, including hypoxia. Since the process of angiogenesis requires a lot of energy, mitochondria play an important role in regulating and promoting this phenomenon. Besides their roles as an oxidative metabolism base, mitochondria are potential bioenergetics organelles to maintain cellular homeostasis via sensing alteration in oxygen levels. Under hypoxic conditions, mitochondria can regulate angiogenesis through different factors. It has been indicated that unidirectional and bidirectional exchange of mitochondria or their related byproducts between the cells is orchestrated via different intercellular mechanisms such as tunneling nanotubes, extracellular vesicles, and gap junctions to maintain the cell homeostasis. Even though, the transfer of mitochondria is one possible mechanism by which cells can promote and regulate the process of angiogenesis under reperfusion/ischemia injury. Despite the existence of a close relationship between mitochondrial donation and angiogenic response in different cell types, the precise molecular mechanisms associated with this phenomenon remain unclear. Here, we aimed to highlight the possible role of mitochondria concerning angiogenesis, especially the role of mitochondrial transport and the possible relation of this transfer with autophagy, the housekeeping phenomenon of cells, and angiogenesis.


Asunto(s)
Mitocondrias , Humanos , Metabolismo Energético , Hipoxia/metabolismo , Mitocondrias/metabolismo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Animales
2.
BMC Biotechnol ; 24(1): 23, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671404

RESUMEN

Volumetric loss is one of the challenging issues in muscle tissue structure that causes functio laesa. Tissue engineering of muscle tissue using suitable hydrogels is an alternative to restoring the physiological properties of the injured area. Here, myogenic properties of type I collagen (0.5%) and keratin (0.5%) were investigated in a mouse model of biceps femoris injury. Using FTIR, gelation time, and rheological analysis, the physicochemical properties of the collagen (Col)/Keratin scaffold were analyzed. Mouse C2C12 myoblast-laden Col/Keratin hydrogels were injected into the injury site and histological examination plus western blotting were performed to measure myogenic potential after 15 days. FTIR indicated an appropriate interaction between keratin and collagen. The blend of Col/Keratin delayed gelation time when compared to the collagen alone group. Rheological analysis revealed decreased stiffening in blended Col/Keratin hydrogel which is favorable for the extrudability of the hydrogel. Transplantation of C2C12 myoblast-laden Col/Keratin hydrogel to injured muscle tissues led to the formation of newly generated myofibers compared to cell-free hydrogel and collagen groups (p < 0.05). In the C2C12 myoblast-laden Col/Keratin group, a low number of CD31+ cells with minimum inflammatory cells was evident. Western blotting indicated the promotion of MyoD in mice that received cell-laden Col/Keratin hydrogel compared to the other groups (p < 0.05). Despite the increase of the myosin cell-laden Col/Keratin hydrogel group, no significant differences were obtained related to other groups (p > 0.05). The blend of Col/Keratin loaded with myoblasts provides a suitable myogenic platform for the alleviation of injured muscle tissue.


Asunto(s)
Queratinas , Desarrollo de Músculos , Músculo Esquelético , Animales , Ratones , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Queratinas/metabolismo , Línea Celular , Hidrogeles/química , Neovascularización Fisiológica/efectos de los fármacos , Ingeniería de Tejidos/métodos , Modelos Animales de Enfermedad , Colágeno/metabolismo , Mioblastos/metabolismo , Mioblastos/citología , Masculino , Andamios del Tejido/química , Angiogénesis
3.
Cell Commun Signal ; 22(1): 80, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291458

RESUMEN

Every single cell can communicate with other cells in a paracrine manner via the production of nano-sized extracellular vesicles. This phenomenon is conserved between prokaryotic and eukaryotic cells. In eukaryotic cells, exosomes (Exos) are the main inter-cellular bioshuttles with the potential to carry different signaling molecules. Likewise, bacteria can produce and release Exo-like particles, namely microvesicles (MVs) into the extracellular matrix. Bacterial MVs function with diverse biological properties and are at the center of attention due to their inherent therapeutic properties. Here, in this review article, the comparable biological properties between the eukaryotic Exos and bacterial MVs were highlighted in terms of biomedical application. Video Abstract.


Asunto(s)
Micropartículas Derivadas de Células , Exosomas , Vesículas Extracelulares , Transducción de Señal , Matriz Extracelular
4.
Cell Commun Signal ; 22(1): 130, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360641

RESUMEN

In recent decades, emerging data have highlighted the critical role of extracellular vesicles (EVs), especially (exosomes) Exos, in the progression and development of several cancer types. These nano-sized vesicles are released by different cell lineages within the cancer niche and maintain a suitable platform for the interchange of various signaling molecules in a paracrine manner. Based on several studies, Exos can transfer oncogenic factors to other cells, and alter the activity of immune cells, and tumor microenvironment, leading to the expansion of tumor cells and metastasis to the remote sites. It has been indicated that the cell-to-cell crosstalk is so complicated and a wide array of factors are involved in this process. How and by which mechanisms Exos can regulate the behavior of tumor cells and non-cancer cells is at the center of debate. Here, we scrutinize the molecular mechanisms involved in the oncogenic behavior of Exos released by different cell lineages of tumor parenchyma. Besides, tumoricidal properties of Exos from various stem cell (SC) types are discussed in detail.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias , Humanos , Exosomas/metabolismo , Neoplasias/patología , Vesículas Extracelulares/metabolismo , Carcinogénesis/metabolismo , Transducción de Señal , Microambiente Tumoral
5.
Med Res Rev ; 43(3): 464-569, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36464910

RESUMEN

Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , Nanoestructuras , Femenino , Humanos , Biomarcadores de Tumor , Neoplasias de la Mama/diagnóstico , Nanotecnología/métodos , Biomarcadores , Nanoestructuras/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
6.
Cardiovasc Diabetol ; 22(1): 247, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697288

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) play a crucial role in regulating adaptive and maladaptive responses in cardiovascular diseases, making them attractive targets for potential biomarkers. However, their potential as novel biomarkers for diagnosing cardiovascular diseases requires systematic evaluation. METHODS: In this study, we aimed to identify a key set of miRNA biomarkers using integrated bioinformatics and machine learning analysis. We combined and analyzed three gene expression datasets from the Gene Expression Omnibus (GEO) database, which contains peripheral blood mononuclear cell (PBMC) samples from individuals with myocardial infarction (MI), stable coronary artery disease (CAD), and healthy individuals. Additionally, we selected a set of miRNAs based on their area under the receiver operating characteristic curve (AUC-ROC) for separating the CAD and MI samples. We designed a two-layer architecture for sample classification, in which the first layer isolates healthy samples from unhealthy samples, and the second layer classifies stable CAD and MI samples. We trained different machine learning models using both biomarker sets and evaluated their performance on a test set. RESULTS: We identified hsa-miR-21-3p, hsa-miR-186-5p, and hsa-miR-32-3p as the differentially expressed miRNAs, and a set including hsa-miR-186-5p, hsa-miR-21-3p, hsa-miR-197-5p, hsa-miR-29a-5p, and hsa-miR-296-5p as the optimum set of miRNAs selected by their AUC-ROC. Both biomarker sets could distinguish healthy from not-healthy samples with complete accuracy. The best performance for the classification of CAD and MI was achieved with an SVM model trained using the biomarker set selected by AUC-ROC, with an AUC-ROC of 0.96 and an accuracy of 0.94 on the test data. CONCLUSIONS: Our study demonstrated that miRNA signatures derived from PBMCs could serve as valuable novel biomarkers for cardiovascular diseases.


Asunto(s)
Enfermedad de la Arteria Coronaria , MicroARNs , Infarto del Miocardio , Humanos , Leucocitos Mononucleares , MicroARNs/genética , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/genética , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/genética , Biomarcadores , Aprendizaje Automático
7.
Cancer Cell Int ; 23(1): 118, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337165

RESUMEN

BACKGROUND: Complexity and heterogeneity of the tumor niche are closely associated with the failure of therapeutic protocols. Unfortunately, most data have been obtained from conventional 2D culture systems which are not completely comparable to in vivo microenvironments. Reconstructed 3D cultures composed of multiple cells are valid cell-based tumor models to recapitulate in vivo-like interaction between the cancer cells and stromal cells and the oncostatic properties of therapeutics. Here, we aimed to assess the tumoricidal properties of melatonin on close-to-real colon cancer tumoroids in in vitro conditions. METHODS: Using the hanging drop method, colon cancer tumoroids composed of three cell lines, including adenocarcinoma HT-29 cells, fibroblasts (HFFF2), and endothelial cells (HUVECs) at a ratio of 2: 1: 1, respectively were developed using 2.5% methylcellulose. Tumoroids were exposed to different concentrations of melatonin, from 0.005 to 0.8 mM and 4 to 10 mM, for 48 h. The survival rate was measured by MTT and LDH leakage assays. Protein levels of endocan and VEGF were assessed using western blotting. Using histological examination (H & E) staining, the integrity of cells within the tumoroid parenchyma was monitored. RESULTS: Despite the reduction of viability rate in lower doses, the structure of tumoroids remained unchanged. In contrast, treatment of tumoroids with higher doses of melatonin, 4 and 10 mM, led to disaggregation of cells and reduction of tumoroid diameter compared to the non-treated control tumoroids (p < 0.05). By increasing melatonin concentration from 4 to 10 mM, the number of necrotic cells increased. Data showed the significant suppression of endocan in melatonin-treated tumoroids related to the non-treated controls (p < 0.05). According to our data, melatonin in higher doses did not alter protein levels of VEGF (p > 0.05). CONCLUSIONS: Melatonin can exert its tumoricidal properties on colon cancer tumoroids via the reduction of tumor cell viability and inhibition of the specific pro-angiogenesis factor.

8.
BMC Cancer ; 23(1): 512, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280524

RESUMEN

Colorectal cancer (CRC) is the third most widespread cancer and the fourth leading lethal disease among different societies. It is thought that CRC accounts for about 10% of all newly diagnosed cancer cases with high-rate mortality. lncRNAs, belonging to non-coding RNAs, are involved in varied cell bioactivities. Emerging data have confirmed a significant alteration in lncRNA transcription under anaplastic conditions. This systematic review aimed to assess the possible influence of abnormal mTOR-associated lncRNAs in the tumorigenesis of colorectal tissue. In this study, the PRISMA guideline was utilized based on the systematic investigation of published articles from seven databases. Of the 200 entries, 24 articles met inclusion criteria and were used for subsequent analyses. Of note, 23 lncRNAs were prioritized in association with the mTOR signaling pathway with up-regulation (79.16%) and down-regulation (20.84%) trends. Based on the obtained data, mTOR can be stimulated or inhibited during CRC by the alteration of several lncRNAs. Determining the dynamic activity of mTOR and relevant signaling pathways via lncRNAs can help us progress novel molecular therapeutics and medications.


Asunto(s)
Neoplasias Colorrectales , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica
9.
Cell Commun Signal ; 21(1): 64, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973780

RESUMEN

Recent advances in extracellular vesicle (EVs) detection and isolation methods have led to the development of novel therapeutic modalities. Among different types of EVs, exosomes (Exos) can transfer different signaling biomolecules and exhibit several superior features compared to whole-cell-based therapies. Therapeutic factors are normally loaded into the Exo lumen or attached to their surface for improving the on-target delivery rate and regenerative outcomes. Despite these advantages, there are several limitations in the application of Exos in in vivo conditions. It was suggested that a set of proteins and other biological compounds are adsorbed around Exos in aqueous phases and constitute an external layer named protein corona (PC). Studies have shown that PC can affect the physicochemical properties of synthetic and natural nanoparticles (NPs) after introduction in biofluids. Likewise, PC is generated around EVs, especially Exos in in vivo conditions. This review article is a preliminary attempt to address the interfering effects of PC on Exo bioactivity and therapeutic effects. Video Abstract.


Asunto(s)
Exosomas , Vesículas Extracelulares , Corona de Proteínas , Exosomas/metabolismo , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Proteínas/metabolismo
10.
Cell Commun Signal ; 21(1): 19, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36691072

RESUMEN

As a common belief, most viruses can egress from the host cells as single particles and transmit to uninfected cells. Emerging data have revealed en bloc viral transmission as lipid bilayer-cloaked particles via extracellular vesicles especially exosomes (Exo). The supporting membrane can be originated from multivesicular bodies during intra-luminal vesicle formation and autophagic response. Exo are nano-sized particles, ranging from 40-200 nm, with the ability to harbor several types of signaling molecules from donor to acceptor cells in a paracrine manner, resulting in the modulation of specific signaling reactions in target cells. The phenomenon of Exo biogenesis consists of multiple and complex biological steps with the participation of diverse constituents and molecular pathways. Due to similarities between Exo biogenesis and virus replication and the existence of shared pathways, it is thought that viruses can hijack the Exo biogenesis machinery to spread and evade immune cells. To this end, Exo can transmit complete virions (as single units or aggregates), separate viral components, and naked genetic materials. The current review article aims to scrutinize challenges and opportunities related to the exosomal delivery of viruses in terms of viral infections and public health. Video Abstract.


Asunto(s)
Exosomas , Virosis , Virus , Humanos , Exosomas/metabolismo , Virosis/metabolismo , Transducción de Señal , Virión
11.
Cell Commun Signal ; 21(1): 118, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208741

RESUMEN

Blood-brain barrier (BBB) interface with multicellular structure controls strictly the entry of varied circulating macromolecules from the blood-facing surface into the brain parenchyma. Under several pathological conditions within the central nervous system, the integrity of the BBB interface is disrupted due to the abnormal crosstalk between the cellular constituents and the recruitment of inflammatory cells. Exosomes (Exos) are nano-sized extracellular vesicles with diverse therapeutic outcomes. These particles transfer a plethora of signaling molecules with the potential to modulate target cell behavior in a paracrine manner. Here, in the current review article, the therapeutic properties of Exos and their potential in the alleviation of compromised BBB structure were discussed. Video Abstract.


Asunto(s)
Exosomas , Vesículas Extracelulares , Barrera Hematoencefálica , Exosomas/metabolismo , Encéfalo , Transporte Biológico , Vesículas Extracelulares/metabolismo
12.
Mol Biol Rep ; 50(9): 7589-7595, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37528312

RESUMEN

BACKGROUND: High-fat diets (HFD) have recently become a public health concern. We hypothesize that HFD induces exosomes biogenesis in the lung tissue of rat model. METHODS AND RESULTS: Sixteen adult male Wistar rats were fed with HFD or a regular chow diet for 3 months. The histopathological changes in lung tissues were measured by hematoxylin and eosin (H&E) staining. Bronchoalveolar lavage (BAL) was performed to assay exosomes by acetylcholinesterase enzyme (AhCE) activity. Real-time PCR (qPCR) was used to evaluate Rab27-b, Alix, and IL-1ß expression, while the immunohistochemical examination was performed for CD81 expression in lung tissues. In addition, expression of IL-1ß was detected by ELISA. We found pathological alterations in the lung tissue of HFD animals. AhCE activity along with the expression level of Rab27-b, Alix, and IL-1ß was increased in HFD animals (p < 0.05). Immunohistochemical staining showed that expression of CD81 was increased in lung tissues of HFD animals compared with the control group (p < 0.05). CONCLUSION: Hence, HFD induced exosomes biogenesis and histopathological changes with IL-1ß expression in rats' lung tissues.


Asunto(s)
Dieta Alta en Grasa , Exosomas , Ratas , Masculino , Animales , Dieta Alta en Grasa/efectos adversos , Ratas Wistar , Acetilcolinesterasa , Pulmón/patología
13.
Cell Biochem Funct ; 41(1): 78-85, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36335538

RESUMEN

It has been shown that type 2 Diabetes Mellitus (T2DM) changes the paracrine activity of several cell types. Whether the biogenesis of exosomes is changed during diabetic conditions is the subject of debate. Here, we investigated the effect of T2M on exosome biogenesis in rat pulmonary tissue. Rats received a high-fat diet regime and a single low dose of Streptozocin to mimic the T2DM-like condition. A total of 8 weeks after induction of T2DM, rats were subjected to several analyses. Besides histological examination, vascular cell adhesion molecule 1 (VCAM-1) levels were detected using immunohistochemistry (IHC) staining. Transcription of several genes such as IL-1ß, Alix, and Rab27b was calculated by real-time polymerase chain reaction assay. Using western blot analysis, intracellular CD63 levels were measured. The morphology and exosome secretion activity were assessed using acetylcholinesterase (AChE) assay and scanning electron microscopy, respectively. Histological results exhibited a moderate-to-high rate of interstitial pneumonia with emphysematous changes. IHC staining showed an increased VCAM-1 expression in the diabetic lungs compared with the normal conditions (p < .05). Likewise, we found the induction of IL-1ß, and exosome-related genes Alix and Rab27b under diabetic conditions compared with the control group (p < .05). Along with these changes, protein levels of CD63 and AChE activity were induced upon the initiation of T2DM, indicating accelerated exosome biogenesis. Taken together, current data indicated the induction of exosome biogenesis in rat pulmonary tissue affected by T2DM. It seems that the induction of inflammatory niche is touted as a stimulatory factor to accelerate exosome secretion.


Asunto(s)
Diabetes Mellitus Tipo 2 , Exosomas , Neumonía , Ratas , Animales , Diabetes Mellitus Tipo 2/metabolismo , Exosomas/metabolismo , Acetilcolinesterasa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Inflamación/metabolismo , Neumonía/metabolismo , Pulmón/metabolismo
14.
J Nanobiotechnology ; 21(1): 313, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37661273

RESUMEN

The regeneration of cutaneous tissue is one of the most challenging issues in human regenerative medicine. To date, several studies have been done to promote cutaneous tissue healing with minimum side effects. The healing potential of polyurethane (PU)/Poly (caprolactone)-poly (ethylene glycol)-poly (caprolactone) (PCEC)/chitosan (CS) (PCS) nanofibrous mat with cationic photosensitizer meso tetrakis (N-methyl pyridinium-4-yl) porphyrin tetratosylate salt (TMP) was examined. The CS tripolyphosphate nanoparticles (CSNPs) were prepared and loaded by TMP to provide an efficient drug release system (TMPNPs) for delivery of TMP to promote wound healing. In in vitro setting, parameters such as bactericidal effects, cytocompatibility, and hemolytic effects were examined. The healing potential of prepared nanofibrous mats was investigated in a rat model of full-thickness cutaneous injury. PCS/TMP/TMPNPs nanofibers can efficiently release porphyrin in the aqueous phase. The addition of TMPNPs and CS to the PU backbone increased the hydrophilicity, degradation, and reduced mechanical properties. The culture of human fetal foreskin fibroblasts (HFFF2) on PCS/TMP/TMPNPs scaffold led to an increased survival rate and morphological adaptation analyzed by MTT and SEM images. Irradiation with a red laser (635 nm, 3 J/cm2) for the 30 s reduced viability of S. aureus and E. Coli bacteria plated on PCS/TMP and PCS/TMP/TMPNPs nanofibrous mats compared to PU/PCEC (PC) and PU/PCEC/CS (PCS) groups, indicating prominent antibacterial effects of PCS/TMP and PCS/TMP/TMPNPs nanofibrous (p < 0.05). Data indicated that PCS/TMP/TMPNPs mat enhanced healing of the full-thickness excisional wound in a rat model by the reduction of inflammatory response and fibrotic changes compared to the PC, and PCS groups (p < 0.05). Immunofluorescence imaging indicated that levels of Desmoglein were increased in rats that received PCS/TMP/TMPNPs compared to the other groups. It is found that a PU-based nanofibrous mat is an appropriate scaffold to accelerate the healing of injured skin.


Asunto(s)
Nanofibras , Animales , Ratas , Humanos , Nanofibras/uso terapéutico , Poliuretanos , Escherichia coli , Staphylococcus aureus , Cicatrización de Heridas , Antibacterianos/farmacología
15.
J Cell Mol Med ; 26(11): 3120-3132, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35535510

RESUMEN

Recently, cytokines belonging to C1q/tumour necrosis factor-related proteins (CTRPs) superfamily have attracted increasing attention due to multiple metabolic functions and desirable anti-inflammatory effects. These various molecular effectors exhibit key roles upon the onset of cardiovascular diseases, making them novel adipo/cardiokines. This review article aimed to highlight recent findings correlated with therapeutic effects and additional mechanisms specific to the CTRP9, particularly in cardiac ischaemia/reperfusion injury (IRI). Besides, the network of the CTPR9 signalling pathway and its possible relationship with IRI were discussed. Together, the discovery of all involved underlying mechanisms could shed light to alleviate the pathological sequelae after the occurrence of IRI.


Asunto(s)
Daño por Reperfusión , Corazón , Humanos , Isquemia , Daño por Reperfusión/patología , Transducción de Señal
16.
Cell Commun Signal ; 20(1): 110, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869548

RESUMEN

Based on clinical observations, stroke is touted as one of the specific pathological conditions, affecting an individual's life worldwide. So far, no effective treatment has been introduced to deal with stroke post-complications. Production and release of several neurotrophic factors by different cells exert positive effects on ischemic areas following stroke. As a correlate, basic and clinical studies have focused on the development and discovery of de novo modalities to introduce these factors timely and in appropriate doses into the affected areas. Exosomes (Exo) are non-sized vesicles released from many cells during pathological and physiological conditions and participate in intercellular communication. These particles transfer several arrays of signaling molecules, like several neurotrophic factors into the acceptor cells and induce specific signaling cascades in the favor of cell bioactivity. This review aimed to highlight the emerging role of exosomes as a therapeutic approach in the regeneration of ischemic areas. Video Abstract.


Asunto(s)
Exosomas , Accidente Cerebrovascular , Comunicación Celular , Humanos , Factores de Crecimiento Nervioso , Accidente Cerebrovascular/terapia , Resultado del Tratamiento
17.
Cell Commun Signal ; 20(1): 173, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36320055

RESUMEN

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been growing swiftly worldwide. Patients with background chronic pulmonary inflammations such as asthma or chronic obstructive pulmonary diseases (COPD) are likely to be infected with this virus. Of note, there is an argument that COVID-19 can remain with serious complications like fibrosis or other pathological changes in the pulmonary tissue of patients with chronic diseases. Along with conventional medications, regenerative medicine, and cell-based therapy could be alternative approaches to compensate for organ loss or restore injured sites using different stem cell types. Owing to unique differentiation capacity and paracrine activity, these cells can accelerate the healing procedure. In this review article, we have tried to scrutinize different reports related to the harmful effects of SARS-CoV-2 on patients with asthma and COPD, as well as the possible therapeutic effects of stem cells in the alleviation of post-COVID-19 complications. Video abstract.


Asunto(s)
Asma , COVID-19 , Enfermedad Pulmonar Obstructiva Crónica , Humanos , SARS-CoV-2 , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Asma/complicaciones , Asma/tratamiento farmacológico
18.
Mol Biol Rep ; 49(5): 3721-3728, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35118570

RESUMEN

BACKGROUND: Asthma, an inflammatory illness of the lungs, remains the most common long-term disease amongst children. This study tried to elaborate the status of apoptosis in asthmatic pulmonary niche after the application of rat mesenchymal stem cells (MSC-CM)-derived secretome. METHODS AND RESULTS: Here, we randomly allocated male Wistar rats into three groups (n = 8); Control animals were intratracheally given 50 µl vehicle. In control-matched sensitized rats, 50 µl normal saline was used. In the last group, 50 µl MSC-CM was applied. Two-week post-administration, transcription of T-bet, GATA-3, Bax, Bcl-2 and Caspase-3 was measured by gene expression analysis. Pathological injuries were monitored using H&E staining. The BALF level of TNF-α was measured using ELISA assay. In asthmatic rats received MSC-CM, the expression of T-bet was increased while the level of GATA-3 decreased compared to the S group (p < 0.05). Levels of BALF TNF-α were suppressed in asthmatic niche after MSC-CM administration (p < 0.05). Compared to the asthmatic group, MSC-CM had potential to alter the expression of apoptosis-related genes in which the expression of Bax and Caspase 3 was decreased and the expression of pro-survival factor, Bcl-2 increased (p < 0.05). CONCLUSION: Our data notified the potency of direct administration of MSC-CM in the alleviation of airway inflammation, presumably by down regulating apoptotic death in pulmonary niche.


Asunto(s)
Asma , Células Madre Mesenquimatosas , Animales , Apoptosis , Asma/metabolismo , Medios de Cultivo Condicionados/farmacología , Pulmón/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
19.
Cell Biochem Funct ; 40(3): 248-262, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35285964

RESUMEN

Most eukaryotic cells secrete extracellular vesicles (EVs), which contribute to intracellular communication through transferring different biomolecules such as proteins, RNAs, and lipids to cells. Two main types of EVs are exosomes and microvesicles. Exosomes originate from multivesicular bodies, while microvesicles are shed from the plasma membrane. Mechanisms of exosomes and microvesicle biogenesis/trafficking are complex and many molecules are involved in their biogenesis and secretion. Tumor-derived EVs contain oncogenic molecules that promote tumor growth, metastasis, immune surveillance, angiogenesis, and chemoresistance. A growing body of evidence indicates various compounds can inhibit biogenesis and secretion of EVs from cells and several experiments were conducted to use EVs-inhibitors for understanding the biology of the cells or for understanding the pathology of several diseases like cancer. However, the nontargeting effects of drugs/inhibitors remain a concern. Our current knowledge of EVs biogenesis and their inhibition from tumor cells may provide an avenue for cancer management. In this review, we shed light on exosomes and microvesicles biogenesis, key roles of tumor-derived EVs, and discuss methods used to inhibition of EVs by different inhibitors.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias , Carcinogénesis/metabolismo , Membrana Celular/metabolismo , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias/metabolismo
20.
Cell Biochem Funct ; 40(5): 430-438, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35647674

RESUMEN

The pandemic of COVID-19 caused worldwide concern. Due to the lack of appropriate medications and the inefficiency of commercially available vaccines, lots of efforts are being made to develop de novo therapeutic modalities. Besides this, the possibility of several genetic mutations in the viral genome has led to the generation of resistant strains such as Omicron against neutralizing antibodies and vaccines, leading to worsening public health status. Exosomes (Exo), nanosized vesicles, possess several therapeutic properties that participate in intercellular communication. The discovery and application of Exo in regenerative medicine have paved the way for the alleviation of several pathologies. These nanosized particles act as natural bioshuttles and transfer several biomolecules and anti-inflammatory cytokines. To date, several approaches are available for the administration of Exo into the targeted site inside the body, although the establishment of standard administration routes remains unclear. As severe acute respiratory syndrome coronavirus 2 primarily affects the respiratory system, we here tried to highlight the transplantation of Exo in the alleviation of COVID-19 pathologies.


Asunto(s)
COVID-19 , Exosomas , COVID-19/terapia , Citocinas , Exosomas/trasplante , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA