Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35078919

RESUMEN

SARS-CoV-2 entry into host cells is a crucial step for virus tropism, transmission, and pathogenesis. Angiotensin-converting enzyme 2 (ACE2) has been identified as the primary entry receptor for SARS-CoV-2; however, the possible involvement of other cellular components in the viral entry has not yet been fully elucidated. Here we describe the identification of vimentin (VIM), an intermediate filament protein widely expressed in cells of mesenchymal origin, as an important attachment factor for SARS-CoV-2 on human endothelial cells. Using liquid chromatography-tandem mass spectrometry, we identified VIM as a protein that binds to the SARS-CoV-2 spike (S) protein. We showed that the S-protein receptor binding domain (RBD) is sufficient for S-protein interaction with VIM. Further analysis revealed that extracellular VIM binds to SARS-CoV-2 S-protein and facilitates SARS-CoV-2 infection, as determined by entry assays performed with pseudotyped viruses expressing S and with infectious SARS-CoV-2. Coexpression of VIM with ACE2 increased SARS-CoV-2 entry in HEK-293 cells, and shRNA-mediated knockdown of VIM significantly reduced SARS-CoV-2 infection of human endothelial cells. Moreover, incubation of A549 cells expressing ACE2 with purified VIM increased pseudotyped SARS-CoV-2-S entry. CR3022 antibody, which recognizes a distinct epitope on SARS-CoV-2-S-RBD without interfering with the binding of the spike with ACE2, inhibited the binding of VIM with CoV-2 S-RBD, and neutralized viral entry in human endothelial cells, suggesting a key role for VIM in SARS-CoV-2 infection of endothelial cells. This work provides insight into the pathogenesis of COVID-19 linked to the vascular system, with implications for the development of therapeutics and vaccines.


Asunto(s)
Células Endoteliales/virología , Espacio Extracelular/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vimentina/metabolismo , Internalización del Virus , Células A549 , Enzima Convertidora de Angiotensina 2/metabolismo , Técnicas de Cocultivo , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Endotelio Vascular/virología , Células HEK293 , Humanos , Unión Proteica
2.
Am J Pathol ; 193(10): 1501-1516, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37676196

RESUMEN

Chronic kidney disease (CKD) is characterized by the accumulation of uremic toxins and renal tubular damage. Tryptophan-derived uremic toxins [indoxyl sulfate (IS) and kynurenine (Kyn)] are well-characterized tubulotoxins. Emerging evidence suggests that transmembrane and immunoglobulin domain-containing 1 (TMIGD1) protects tubular cells and promotes survival. However, the direct molecular mechanism(s) underlying how these two opposing pathways crosstalk remains unknown. We posited that IS and Kyn mediate tubular toxicity through TMIGD1 and the loss of TMIGD1 augments tubular injury. Results from the current study showed that IS and Kyn suppressed TMIGD1 transcription in tubular cells in a dose-dependent manner. The wild-type CCAAT enhancer-binding protein ß (C/EBPß) enhanced, whereas a dominant-negative C/EBPß suppressed, TMIGD1 promoter activity. IS down-regulated C/EBPß in primary human renal tubular cells. The adenine-induced CKD, unilateral ureteric obstruction, and deoxycorticosterone acetate salt unilateral nephrectomy models showed reduced TMIGD1 expression in the renal tubules, which correlated with C/EBPß expression. C/EBPß levels negatively correlated with the IS and Kyn levels. Inactivation of TMIGD1 in mice significantly lowered acetylated tubulin, decreased tubular cell proliferation, caused severe tubular damage, and worsened renal function. Thus, the current results demonstrate that TMIGD1 protects renal tubular cells from renal injury in different models of CKD and uncovers a novel mechanism of tubulotoxicity of tryptophan-based uremic toxins.


Asunto(s)
Insuficiencia Renal Crónica , Triptófano , Humanos , Animales , Ratones , Tóxinas Urémicas , Riñón/fisiología , Dominios de Inmunoglobulinas , Glicoproteínas de Membrana
3.
Mol Cell ; 61(1): 98-110, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26687682

RESUMEN

The molecular basis by which receptor tyrosine kinases (RTKs) recruit and phosphorylate Src Homology 2 (SH2) domain-containing substrates has remained elusive. We used X-ray crystallography, NMR spectroscopy, and cell-based assays to demonstrate that recruitment and phosphorylation of Phospholipase Cγ (PLCγ), a prototypical SH2 containing substrate, by FGF receptors (FGFR) entails formation of an allosteric 2:1 FGFR-PLCγ complex. We show that the engagement of pTyr-binding pocket of the cSH2 domain of PLCγ by the phosphorylated tail of an FGFR kinase induces a conformational change at the region past the cSH2 core domain encompassing Tyr-771 and Tyr-783 to facilitate the binding/phosphorylation of these tyrosines by another FGFR kinase in trans. Our data overturn the current paradigm that recruitment and phosphorylation of substrates are carried out by the same RTK monomer in cis and disclose an obligatory role for receptor dimerization in substrate phosphorylation in addition to its canonical role in kinase activation.


Asunto(s)
Fosfolipasa C gamma/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos , Resonancia Magnética Nuclear Biomolecular , Fosfatidilinositoles/metabolismo , Fosfolipasa C gamma/química , Fosfolipasa C gamma/genética , Fosforilación , Unión Proteica , Conformación Proteica , Transporte de Proteínas , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Relación Estructura-Actividad , Transfección , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Dominios Homologos src
4.
Am J Pathol ; 191(1): 157-167, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33129760

RESUMEN

Colorectal cancer (CRC) is a leading nonfamilial cause of cancer mortality among men and women. Although various genetic and epigenetic mechanisms have been identified, the full molecular mechanisms deriving CRC tumorigenesis are not fully understood. This study demonstrates that cell adhesion molecule transmembrane and immunoglobulin domain containing 1 (TMIGD1) are highly expressed in mouse and human normal intestinal epithelial cells. TMIGD1 knockout mice were developed, and the loss of TMIGD1 in mice was shown to result in the development of adenomas in small intestine and colon. In addition, the loss of TMIGD1 significantly impaired intestinal epithelium brush border membrane, junctional polarity, and maturation. Mechanistically, TMIGD1 inhibits tumor cell proliferation and cell migration, arrests cell cycle at the G2/M phase, and induces expression of p21CIP1 (cyclin-dependent kinase inhibitor 1), and p27KIP1 (cyclin-dependent kinase inhibitor 1B) expression, key cell cycle inhibitor proteins involved in the regulation of the cell cycle. Moreover, TMIGD1 is shown to be progressively down-regulated in sporadic human CRC, and its downregulation correlates with poor overall survival. The findings herein identify TMIGD1 as a novel tumor suppressor gene and provide new insights into the pathogenesis of colorectal cancer and a novel potential therapeutic target.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Neoplasias del Colon/metabolismo , Glicoproteínas de Membrana/metabolismo , Adenoma/genética , Adenoma/metabolismo , Adenoma/patología , Animales , Movimiento Celular/genética , Proliferación Celular/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Puntos de Control de la Fase G2 del Ciclo Celular/fisiología , Genes Supresores de Tumor/fisiología , Humanos , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
5.
J Biol Chem ; 295(49): 16691-16699, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32978258

RESUMEN

Autophagy plays critical roles in the maintenance of endothelial cells in response to cellular stress caused by blood flow. There is growing evidence that both cell adhesion and cell detachment can modulate autophagy, but the mechanisms responsible for this regulation remain unclear. Immunoglobulin and proline-rich receptor-1 (IGPR-1) is a cell adhesion molecule that regulates angiogenesis and endothelial barrier function. In this study, using various biochemical and cellular assays, we demonstrate that IGPR-1 is activated by autophagy-inducing stimuli, such as amino acid starvation, nutrient deprivation, rapamycin, and lipopolysaccharide. Manipulating the IκB kinase ß activity coupled with in vivo and in vitro kinase assays demonstrated that IκB kinase ß is a key serine/threonine kinase activated by autophagy stimuli and that it catalyzes phosphorylation of IGPR-1 at Ser220 The subsequent activation of IGPR-1, in turn, stimulates phosphorylation of AMP-activated protein kinase, which leads to phosphorylation of the major pro-autophagy proteins ULK1 and Beclin-1 (BECN1), increased LC3-II levels, and accumulation of LC3 punctum. Thus, our data demonstrate that IGPR-1 is activated by autophagy-inducing stimuli and in response regulates autophagy, connecting cell adhesion to autophagy. These findings may have important significance for autophagy-driven pathologies such cardiovascular diseases and cancer and suggest that IGPR-1 may serve as a promising therapeutic target.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Antígenos CD28/metabolismo , Adhesión Celular , Secuencias de Aminoácidos , Animales , Autofagia/efectos de los fármacos , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Beclina-1/metabolismo , Antígenos CD28/química , Antígenos CD28/genética , Adhesión Celular/efectos de los fármacos , Células HEK293 , Humanos , Quinasa I-kappa B/deficiencia , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipopolisacáridos/farmacología , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación/efectos de los fármacos , Primates , ARN Guía de Kinetoplastida/metabolismo , Sirolimus/farmacología , Especificidad por Sustrato
6.
Am J Pathol ; 190(3): 602-613, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32113662

RESUMEN

Casitas B-lineage lymphoma (c-Cbl) is a recently identified ubiquitin ligase of nuclear ß-catenin and a suppressor of colorectal cancer (CRC) growth in cell culture and mouse tumor xenografts. We hypothesized that reduction in c-Cbl in colonic epithelium is likely to increase the levels of nuclear ß-catenin in the intestinal crypt, augmenting CRC tumorigenesis in an adenomatous polyposis coli (APCΔ14/+) mouse model. Haploinsufficient c-Cbl mice (APCΔ14/+ c-Cbl+/-) displayed a significant (threefold) increase in atypical hyperplasia and adenocarcinomas in the small and large intestines; however, no differences were noted in the adenoma frequency. In contrast to the APCΔ14/+ c-Cbl+/+ mice, APCΔ14/+ c-Cbl+/- crypts showed nuclear ß-catenin throughout the length of the crypts and up-regulation of Axin2, a canonical Wnt target gene, and SRY-box transcription factor 9, a marker of intestinal stem cells. In contrast, haploinsufficiency of c-Cbl+/- alone was insufficient to induce tumorigenesis regardless of an increase in the number of intestinal epithelial cells with nuclear ß-catenin and SRY-box transcription factor 9 in APC+/+ c-Cbl+/- mice. This study demonstrates that haploinsufficiency of c-Cbl results in Wnt hyperactivation in intestinal crypts and accelerates CRC progression to adenocarcinoma in the milieu of APCΔ14/+, a phenomenon not found with wild-type APC. While emphasizing the role of APC as a gatekeeper in CRC, this study also demonstrates that combined partial loss of c-Cbl and inactivation of APC significantly contribute to CRC tumorigenesis.


Asunto(s)
Adenocarcinoma/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Neoplasias del Colon/genética , Neoplasias Colorrectales/genética , Haploinsuficiencia , Linfoma/genética , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Adenocarcinoma/patología , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Carcinogénesis , Neoplasias del Colon/patología , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Linfoma/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-cbl/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
7.
J Biomed Sci ; 28(1): 35, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33962630

RESUMEN

BACKGROUND: The cell adhesion molecule IGPR-1 regulates various critical cellular processes including, cell-cell adhesion, mechanosensing and autophagy and plays important roles in angiogenesis and tumor growth; however, the molecular mechanism governing the cell surface levels of IGPR-1 remains unknown. RESULTS: In the present study, we used an in vitro ubiquitination assay and identified ubiquitin E3 ligase NEDD4 and the ubiquitin conjugating enzyme UbcH6 involved in the ubiquitination of IGPR-1. In vitro GST-pulldown and in vivo co-immunoprecipitation assays demonstrated that NEDD4 binds to IGPR-1. Over-expression of wild-type NEDD4 downregulated IGPR-1 and deletion of WW domains (1-4) of NEDD4 revoked its effects on IGPR-1. Knockdown of NEDD4 increased IGPR-1 levels in A375 melanoma cells. Deletion of 57 amino acids encompassing the polyproline rich (PPR) motifs on the C-terminus of IGPR-1 nullified its binding with NEDD4. Furthermore, we demonstrate that NEDD4 promotes K48- and K63-dependent polyubiquitination of IGPR-1. The NEDD4-mediated polyubiquitination of IGPR-1 stimulates lysosomal-dependent degradation of IGPR-1 as the treatment of cells with the lysosomal inhibitors, bafilomycine or ammonium chloride increased IGPR-1 levels ectopically expressed in HEK-293 cells and in multiple endogenously IGPR-1 expressing human skin melanoma cell lines. CONCLUSIONS: NEDD4 ubiquitin E3 ligase binds to and mediates polyubiquitination of IGPR-1 leading to its lysosomal-dependent degradation. NEDD4 is a key regulator of IGPR-1 expression with implication in the therapeutic targeting of IGPR-1 in human cancers.


Asunto(s)
Antígenos CD28/química , Membrana Celular/metabolismo , Lisosomas/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Células HEK293 , Humanos , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Estabilidad Proteica , Ubiquitinación
8.
J Biomed Sci ; 28(1): 61, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34503512

RESUMEN

BACKGROUND: The cell adhesion molecule transmembrane and immunoglobulin (Ig) domain containing1 (TMIGD1) is a novel tumor suppressor that plays important roles in regulating cell-cell adhesion, cell proliferation and cell cycle. However, the mechanisms of TMIGD1 signaling are not yet fully elucidated. RESULTS: TMIGD1 binds to the ERM family proteins moesin and ezrin, and an evolutionarily conserved RRKK motif on the carboxyl terminus of TMIGD1 mediates the interaction of TMIGD1 with the N-terminal ERM domains of moesin and ezrin. TMIGD1 governs the apical localization of moesin and ezrin, as the loss of TMIGD1 in mice altered apical localization of moesin and ezrin in epithelial cells. In cell culture, TMIGD1 inhibited moesin-induced filopodia-like protrusions and cell migration. More importantly, TMIGD1 stimulated the Lysine (K40) acetylation of α-tubulin and promoted mitotic spindle organization and CRISPR/Cas9-mediated knockout of moesin impaired the TMIGD1-mediated acetylation of α-tubulin and filamentous (F)-actin organization. CONCLUSIONS: TMIGD1 binds to moesin and ezrin, and regulates their cellular localization. Moesin plays critical roles in TMIGD1-dependent acetylation of α-tubulin, mitotic spindle organization and cell migration. Our findings offer a molecular framework for understanding the complex functional interplay between TMIGD1 and the ERM family proteins in the regulation of cell adhesion and mitotic spindle assembly, and have wide-ranging implications in physiological and pathological processes such as cancer progression.


Asunto(s)
Movimiento Celular , Glicoproteínas de Membrana/genética , Proteínas de Microfilamentos/genética , Tubulina (Proteína)/metabolismo , Acetilación , Animales , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo
9.
J Biol Chem ; 294(35): 13117-13130, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31308178

RESUMEN

The tumor microenvironment and proinflammatory signals significantly alter glycosylation of cell-surface proteins on endothelial cells. By altering the N-glycosylation machinery in the endoplasmic reticulum and Golgi, proinflammatory cytokines promote the modification of endothelial glycoproteins such as vascular endothelial growth factor receptor 2 (VEGFR2) with sialic acid-capped N-glycans. VEGFR2 is a highly N-glycosylated receptor tyrosine kinase involved in pro-angiogenic signaling in physiological and pathological contexts, including cancer. Here, using glycoside hydrolase and kinase assays and immunoprecipitation and MS-based analyses, we demonstrate that N-linked glycans at the Asn-247 site in VEGFR2 hinder VEGF ligand-mediated receptor activation and signaling in endothelial cells. We provide evidence that cell surface-associated VEGFR2 displays sialylated N-glycans at Asn-247 and, in contrast, that the nearby sites Asn-145 and Asn-160 contain lower levels of sialylated N-glycans and higher levels of high-mannose N-glycans, respectively. Furthermore, we report that VEGFR2 Asn-247-linked glycans capped with sialic acid oppose ligand-mediated VEGFR2 activation, whereas the uncapped asialo-glycans favor activation of this receptor. We propose that N-glycosylation, specifically the capping of N-glycans at Asn-247 by sialic acid, tunes ligand-dependent activation and signaling of VEGFR2 in endothelial cells.


Asunto(s)
Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Línea Celular , Glicosilación , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ligandos , Polisacáridos/química , Polisacáridos/metabolismo , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química
10.
J Biol Chem ; 294(37): 13671-13680, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31341021

RESUMEN

Vascular endothelial cells respond to blood flow-induced shear stress. However, the mechanisms through which endothelial cells transduce mechanical signals to cellular responses remain poorly understood. In this report, using tensile-force assays, immunofluorescence and atomic force microscopy, we demonstrate that immunoglobulin and proline-rich receptor-1 (IGPR-1) responds to mechanical stimulation and increases the stiffness of endothelial cells. We observed that IGPR-1 is activated by shear stress and tensile force and that flow shear stress-mediated IGPR-1 activation modulates remodeling of endothelial cells. We found that under static conditions, IGPR-1 is present at the cell-cell contacts; however, under shear stress, it redistributes along the cell borders into the flow direction. IGPR-1 activation stimulated actin stress fiber assembly and cross-linking with vinculin. Moreover, we noted that IGPR-1 stabilizes cell-cell junctions of endothelial cells as determined by staining of cells with ZO1. Mechanistically, shear stress stimulated activation of AKT Ser/Thr kinase 1 (AKT1), leading to phosphorylation of IGPR-1 at Ser-220. Inhibition of this phosphorylation prevented shear stress-induced actin fiber assembly and endothelial cell remodeling. Our findings indicate that IGPR-1 is an important player in endothelial cell mechanosensing, insights that have important implications for the pathogenesis of common maladies, including ischemic heart diseases and inflammation.


Asunto(s)
Antígenos CD28/metabolismo , Células Endoteliales/metabolismo , Actinas/metabolismo , Adhesión Celular/fisiología , Células Cultivadas , Células Endoteliales/citología , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Resistencia al Corte , Transducción de Señal , Estrés Mecánico
11.
Am J Pathol ; 188(8): 1921-1933, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30029779

RESUMEN

The proto-oncogene ß-catenin drives colorectal cancer (CRC) tumorigenesis. Casitas B-lineage lymphoma (c-Cbl) inhibits CRC tumor growth through targeting nuclear ß-catenin by a poorly understood mechanism. In addition, the role of c-Cbl in human CRC remains largely underexplored. Using a novel quantitative histopathologic technique, we demonstrate that patients with high c-Cbl-expressing tumors had significantly better median survival (3.7 years) compared with low c-Cbl-expressing tumors (1.8 years; P = 0.0026) and were more than twice as likely to be alive at 3 years compared with low c-Cbl tumors (P = 0.0171). Our data further demonstrate that c-Cbl regulation of nuclear ß-catenin requires phosphorylation of c-Cbl Tyr371 because its mutation compromises its ability to target ß-catenin. The tyrosine 371 (Y371H) mutant interacted with but failed to ubiquitinate nuclear ß-catenin. The nuclear localization of the c-Cbl-Y371H mutant contributed to its dominant negative effect on nuclear ß-catenin. The biological importance of c-Cbl-Y371H was demonstrated in various systems, including a transgenic Wnt-8 zebrafish model. c-Cbl-Y371H mutant showed augmented Wnt/ß-catenin signaling, increased Wnt target genes, angiogenesis, and CRC tumor growth. This study demonstrates a strong link between c-Cbl and overall survival of patients with CRC and provides new insights into a possible role of Tyr371 phosphorylation in Wnt/ß-catenin regulation, which has important implications in tumor growth and angiogenesis in CRC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/mortalidad , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Tirosina/metabolismo , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación , Neovascularización Patológica , Fosforilación , Pronóstico , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-cbl/genética , Tasa de Supervivencia , Células Tumorales Cultivadas , Proteína Wnt1/genética , Pez Cebra , beta Catenina/genética
12.
Traffic ; 17(3): 289-300, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26602861

RESUMEN

Ligand stimulation promotes downregulation of RTKs, a mechanism by which RTKs, through the ubiquitination pathway are removed from the cell surface, causing a temporary termination of RTK signaling. The molecular mechanisms governing RTK trafficking and maturation in the endoplasmic reticulum (ER)/Golgi compartments are poorly understood. Vascular endothelial growth factor receptor-2 (VEGFR-2) is a prototypic RTK that plays a critical role in physiologic and pathologic angiogenesis. Here we demonstrate that Ring Finger Protein 121 (RNF121), an ER ubiquitin E3 ligase, is expressed in endothelial cells and regulates maturation of VEGFR-2. RNF121 recognizes newly synthesized VEGFR-2 in the ER and controls its trafficking and maturation. Over-expression of RNF121 promoted ubiquitination of VEGFR-2, inhibited its maturation and resulted a significantly reduced VEGFR-2 presence at the cell surface. Conversely, the shRNA-mediated knockdown of RNF121 in primary endothelial cells reduced VEGFR-2 ubiquitination and increased its cell surface level. The RING Finger domain of RNF121 is required for its activity toward VEGFR-2, as its deletion significantly reduced the effect of RNF121 on VEGFR-2. Additionally, RNF121 inhibited VEGF-induced endothelial cell proliferation and angiogenesis. Taken together, these data identify RNF121 as a key determinant of angiogenic signaling that restricts VEGFR-2 cell surface presence and its angiogenic signaling.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Proliferación Celular , Retículo Endoplásmico/metabolismo , Células HEK293 , Células HT29 , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Proteínas de la Membrana/genética , Transporte de Proteínas , Porcinos , Ubiquitinación , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
J Proteome Res ; 16(2): 677-688, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-27966990

RESUMEN

Vascular endothelial growth factor receptor-2 (VEGFR-2) is an important receptor tyrosine kinase (RTK) that plays critical roles in both physiologic and pathologic angiogenesis. The extracellular domain of VEGFR-2 is composed of seven immunoglobulin-like domains, each with multiple potential N-glycosylation sites (sequons). N-glycosylation plays a central role in RTK ligand binding, trafficking, and stability. However, despite its importance, the functional role of N-glycosylation of VEGFR-2 remains poorly understood. The objectives of the present study were to characterize N-glycosylation sites in VEGFR-2 via enzymatic release of the glycans and concomitant incorporation of 18O into formerly N-glycosylated sites followed by tandem mass spectrometry (MS/MS) analysis to determine N-glycosylation site occupancy and the site-specific N-glycan heterogeneity of VEGFR-2 glycopeptides. The data demonstrated that all seven VEGFR-2 immunoglobulin-like domains have at least one occupied N-glycosylation site. MS/MS analyses of glycopeptides and deamidated, deglycosylated (PNGase F-treated) peptides from ectopically expressed VEGFR-2 in porcine aortic endothelial (PAE) cells identified N-glycans at the majority of the 17 potential N-glycosylation sites on VEGFR-2 in a site-specific manner. The data presented here provide direct evidence for site-specific, heterogeneous N-glycosylation and N-glycosylation site occupancy on VEGFR-2. The study has important implications for the therapeutic targeting of VEGFR-2, ligand binding, trafficking, and signaling.


Asunto(s)
Células Endoteliales/metabolismo , Glicopéptidos/genética , Polisacáridos/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Secuencia de Aminoácidos/genética , Animales , Aorta/metabolismo , Glicopéptidos/metabolismo , Glicosilación , Humanos , Péptidos , Polisacáridos/genética , Unión Proteica , Porcinos , Espectrometría de Masas en Tándem , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
14.
J Biol Chem ; 290(20): 12537-46, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25784557

RESUMEN

Wnt signaling plays important roles in both the tumor-induced angiogenesis and tumorigenesis through the transcriptionally active nuclear ß-catenin. Recently, c-Cbl was identified as a unique E3 ubiquitin ligase targeting the active nuclear ß-catenin. However, little is known about the molecular mechanisms by which c-Cbl regulates ubiquitination and degradation of active ß-catenin. Here, we demonstrate that Wnt activation promotes the phosphorylation of c-Cbl at tyrosine 731(Tyr-731), which increases c-Cbl dimerization and binding to ß-catenin. Tyr-731 phosphorylation and dimerization mediate c-Cbl nuclear translocation and lead to the degradation of nuclearly active ß-catenin in the Wnt-on phase. c-Cbl activation also inhibits expression of the pro-angiogenic Wnt targets, IL-8 and VEGF. Phospho-Tyr-731-inactive mutant c-Cbl (Y731F) enhances and phosphomimetic mutant c-Cbl (Y731E) suppresses angiogenesis in zebrafish. Taken together, we have identified a novel mechanism for the regulation of active nuclear ß-catenin by c-Cbl and its critical role in angiogenesis. This mechanism can be further explored to modulate both the pathological angiogenesis and the tumorigenesis.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica/fisiología , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Vía de Señalización Wnt/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , beta Catenina/metabolismo , Sustitución de Aminoácidos , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Mutación Missense , Fosforilación/fisiología , Multimerización de Proteína/fisiología , Proteolisis , Proteínas Proto-Oncogénicas c-cbl/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , beta Catenina/genética
15.
Am J Pathol ; 185(10): 2757-67, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26342724

RESUMEN

Oxidative damage to renal tubular epithelial cells is a fundamental pathogenic mechanism implicated in both acute kidney injury and chronic kidney diseases. Because epithelial cell survival influences the outcome of acute kidney injury and chronic kidney diseases, identifying its molecular regulators could provide new insight into pathobiology and possible new therapeutic strategies for these diseases. We have identified transmembrane and immunoglobulin domain-containing 1 (TMIGD1) as a novel adhesion molecule, which is highly conserved in humans and other species. TMIGD1 is expressed in renal tubular epithelial cells and promotes cell survival. The extracellular domain of TMIGD1 contains two putative immunoglobulin domains and mediates self-dimerization. Our data suggest that TMIGD1 regulates transepithelial electric resistance and permeability of renal epithelial cells. TMIGD1 controls cell migration, cell morphology, and protects renal epithelial cells from oxidative- and nutrient-deprivation-induced cell injury. Hydrogen peroxide-induced oxidative cell injury downregulates TMIGD1 expression and targets it for ubiquitination. Moreover, TMIGD1 expression is significantly affected in both acute kidney injury and in deoxy-corticosterone acetate and sodium chloride (deoxy-corticosterone acetate salt)-induced chronic hypertensive kidney disease mouse models. Taken together, we have identified TMIGD1 as a novel cell adhesion molecule expressed in kidney epithelial cells that protects kidney epithelial cells from oxidative cell injury to promote cell survival.


Asunto(s)
Lesión Renal Aguda/metabolismo , Células Epiteliales/metabolismo , Glicoproteínas de Membrana/metabolismo , Estrés Oxidativo/fisiología , Lesión Renal Aguda/patología , Animales , Moléculas de Adhesión Celular/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Inmunoglobulinas/metabolismo , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Ratones de la Cepa 129 , ARN Mensajero/metabolismo
16.
Proteomics ; 15(2-3): 300-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25161153

RESUMEN

The vascular endothelial growth factor receptor-2 (VEGFR-2) belongs to the family of receptor tyrosine kinases and is a key player in vasculogenesis and pathological angiogenesis. An emerging picture of PTMs of VEGFR-2 suggests that they play central roles in generating a highly dynamic and complex signaling system that regulates key angiogenic responses ranging from endothelial cell differentiation, proliferation, migration to permeability. Recent MS analysis of VEGFR-2 uncovered previously unrecognized PTMs on VEGFR-2 with a distinct function. The ligand binding extracellular domain of VEGFR-2 is composed of seven immunoglobulin-like domains highly decorated with N-glycosylation, while its cytoplasmic domain is subject to multiple PTMs including Tyr, Ser/Thr phosphorylation, Arg and Lys methylation, acetylation and ubiquitination. Here we review the PTMs on VEGFR-2, their importance in angiogenic signaling relays and possible novel therapeutic potentials.


Asunto(s)
Neovascularización Patológica/metabolismo , Neovascularización Fisiológica , Procesamiento Proteico-Postraduccional , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Glicosilación , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Receptor 2 de Factores de Crecimiento Endotelial Vascular/análisis
17.
Angiogenesis ; 18(4): 449-62, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26059764

RESUMEN

Expression and activation of vascular endothelial growth factor receptor 2 (VEGFR-2) by VEGF ligands are the main events in the stimulation of pathological angiogenesis. VEGFR-2 expression is generally low in the healthy adult blood vessels, but its expression is markedly increased in the pathological angiogenesis. In this report, we demonstrate that phosducin-like 3 (PDCL3), a recently identified chaperone protein involved in the regulation of VEGFR-2 expression, is required for angiogenesis in zebrafish and mouse. PDCL3 undergoes N-terminal methionine acetylation, and this modification affects PDCL3 expression and its interaction with VEGFR-2. Expression of PDCL3 is regulated by hypoxia, the known stimulator of angiogenesis. The mutant PDCL3 that is unable to undergo N-terminal methionine acetylation was refractory to the effect of hypoxia. The siRNA-mediated silencing of PDCL3 decreased VEGFR-2 expression resulting in a decrease in VEGF-induced VEGFR-2 phosphorylation, whereas PDCL3 over-expression increased VEGFR-2 protein. Furthermore, we show that PDCL3 protects VEGFR-2 from misfolding and aggregation. The data provide new insights for the chaperone function of PDCL3 in angiogenesis and the roles of hypoxia and N-terminal methionine acetylation in PDCL3 expression and its effect on VEGFR-2.


Asunto(s)
Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Hipoxia/metabolismo , Chaperonas Moleculares/metabolismo , Neovascularización Fisiológica , Proteínas del Tejido Nervioso/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/biosíntesis , Animales , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Hipoxia/patología , Ratones , Pliegue de Proteína
18.
J Biol Chem ; 288(32): 23171-81, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23792958

RESUMEN

Angiogenesis, a hallmark step in tumor metastasis and ocular neovascularization, is driven primarily by the function of VEGF ligand on one of its receptors, VEGF receptor 2 (VEGFR-2). Central to the proliferation and ensuing angiogenesis of endothelial cells, the abundance of VEGFR-2 on the surface of endothelial cells is essential for VEGF to recognize and activate VEGFR-2. We have identified phosducin-like 3 (PDCL3, also known as PhLP2A), through a yeast two-hybrid system, as a novel protein involved in the stabilization of VEGFR-2 by serving as a chaperone. PDCL3 binds to the juxtamembrane domain of VEGFR-2 and controls the abundance of VEGFR-2 by inhibiting its ubiquitination and degradation. PDCL3 increases VEGF-induced tyrosine phosphorylation and is required for VEGFR-2-dependent endothelial capillary tube formation and proliferation. Taken together, our data provide strong evidence for the role of PDCL3 in angiogenesis and establishes the molecular mechanism by which it regulates VEGFR-2 expression and function.


Asunto(s)
Proteínas Portadoras/metabolismo , Chaperonas Moleculares/metabolismo , Neovascularización Fisiológica/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteolisis , Ubiquitinación/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/biosíntesis , Animales , Capilares/citología , Capilares/metabolismo , Proteínas Portadoras/genética , Regulación de la Expresión Génica/fisiología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Chaperonas Moleculares/genética , Proteínas del Tejido Nervioso/genética , Saccharomyces cerevisiae , Porcinos , Técnicas del Sistema de Dos Híbridos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
19.
J Biol Chem ; 288(32): 23505-17, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23744067

RESUMEN

Regulation of transcriptionally active nuclear ß-catenin during the Wnt-on phase is crucial to ensure controlled induction of Wnt target genes. Several ubiquitin E3 ligases are known to regulate cytosolic ß-catenin during the Wnt-off phase, but little is known about the fate of active nuclear ß-catenin in the Wnt-on phase. We now describe ubiquitination of active ß-catenin in the Wnt-on phase by a RING finger ubiquitin E3 ligase, Casitas B-lineage lymphoma (c-Cbl) in endothelial cells. c-Cbl binds preferentially to nuclearly active ß-catenin in the Wnt-on phase via the armadillo repeat region. Wild-type c-Cbl suppresses and E3 ligase-deficient c-Cbl-70Z increases Wnt signaling. Wnt induces nuclear translocation of c-Cbl where it ubiquitinates nuclear ß-catenin. Deletion of the c-Cbl UBA domain abrogates its dimerization, binding to ß-catenin, Wnt-induced c-Cbl nuclear translocation, and ubiquitination of nuclear ß-catenin. c-Cbl activity inhibits pro-angiogenic Wnt targets IL-8 and VEGF levels and angiogenesis in a ß-catenin-dependent manner. This study defines for the first time c-Cbl as a ubiquitin E3 ligase that targets nuclearly active ß-catenin in the Wnt-on phase and uncovers a novel layer of regulation of Wnt signaling.


Asunto(s)
Núcleo Celular/metabolismo , Células Endoteliales/metabolismo , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Ubiquitinación/fisiología , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/genética , Células Endoteliales/citología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interleucina-8/biosíntesis , Interleucina-8/genética , Proteínas Proto-Oncogénicas c-cbl/genética , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética , beta Catenina/genética
20.
J Biol Chem ; 288(15): 10265-74, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23393131

RESUMEN

The endothelial cell-specific chemotaxis receptor (ECSCR) is a cell-surface protein selectively expressed by endothelial cells (ECs), with roles in EC migration, apoptosis and proliferation. Our previous study (Verma, A., Bhattacharya, R., Remadevi, I., Li, K., Pramanik, K., Samant, G. V., Horswill, M., Chun, C. Z., Zhao, B., Wang, E., Miao, R. Q., Mukhopadhyay, D., Ramchandran, R., and Wilkinson, G. A. (2010) Blood 115, 4614-4622) showed that loss of ECSCR in primary ECs reduced tyrosine phosphorylation of vascular endothelial growth factor (VEGF) receptor 2/kinase insert domain receptor (KDR) but not VEGF receptor 1/FLT1. Here, we show that ECSCR biochemically associates with KDR but not FLT1 and that the predicted ECSCR cytoplasmic and transmembrane regions can each confer association with KDR. Stimulation with VEGF165 rapidly and transiently increases ECSCR-KDR complex formation, a process blocked by the KDR tyrosine kinase inhibitor compound SU5416 or inhibitors of endosomal acidification. Triple labeling experiments show VEGF-stimulated KDR(+)/ECSCR(+) intracellular co-localization. Silencing of ECSCR disrupts VEGF-induced KDR activation and AKT and ERK phosphorylation and impairs VEGF-stimulated KDR degradation. In zebrafish, ecscr interacts with kdrl during intersomitic vessel sprouting. Human placenta and infantile hemangioma samples highly express ECSCR protein, suggesting a role for ECSCR-KDR interaction in these tissues.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas de la Membrana/metabolismo , Proteolisis , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Reguladoras de la Apoptosis , Línea Celular , Endosomas/genética , Endosomas/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Hemangioma/genética , Hemangioma/metabolismo , Hemangioma/patología , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Indoles/farmacología , Masculino , Proteínas de la Membrana/genética , Placenta/metabolismo , Placenta/patología , Embarazo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt , Pirroles/farmacología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA