RESUMEN
In this paper, an integrated thermoelectric (TE) and photovoltaic (PV) hybrid energy harvesting system (HEHS) is proposed for self-powered internet of thing (IoT)-enabled wireless sensor networks (WSNs). The proposed system can run at a minimum of 0.8 V input voltage under indoor light illumination of at least 50 lux and a minimum temperature difference, ∆T = 5 °C. At the lowest illumination and temperature difference, the device can deliver 0.14 W of power. At the highest illumination of 200 lux and ∆T = 13 °C, the device can deliver 2.13 W. The developed HEHS can charge a 0.47 F, 5.5 V supercapacitor (SC) up to 4.12 V at the combined input voltage of 3.2 V within 17 s. In the absence of any energy sources, the designed device can back up the complete system for 92 s. The sensors can successfully send 39 data string to the webserver within this time at a two-second data transmission interval. A message queuing telemetry transport (MQTT) based IoT framework with a customised smartphone application 'MQTT dashboard' is developed and integrated with an ESP32 Wi-Fi module to transmit, store, and monitor the sensors data over time. This research, therefore, opens up new prospects for self-powered autonomous IoT sensor systems under fluctuating environments and energy harvesting regimes, however, utilising available atmospheric light and thermal energy.
RESUMEN
Generation of energy across the world is today reliant majorly on fossil fuels. The burning of these fuels is growing in line with the increase in the demand for energy globally. Consequently, climate change, air contamination, and energy security issues are rising as well. An efficient alternative to this grave hazard is the speedy substitution of fossil fuel-based carbon energy sources with the shift to clean sources of renewable energy that cause zero emissions. This needs to happen in conjunction with the continuing increase in the overall consumption of energy worldwide. Many resources of renewable energy are available. These include thermal, solar photovoltaic, biomass and wind, tidal energy, hydropower, and geothermal. Notably, tidal energy exhibits great potential with regard to its dependability, superior energy density, certainty, and durability. The energy mined from the tides on the basis of steady and anticipated vertical movements of the water, causing tidal currents, could be converted into kinetic energy to produce electricity. Tidal barrages could channel mechanical energy, while tidewater river turbines can seize the energy from tidal currents. This study discusses the present trends, ecological effects, and the prospects for technology related to tidal energy.
RESUMEN
Addressing the critical conundrum of escalating municipal solid waste (MSW) and shrinking landfill spaces in urban areas, this research pioneers a sustainable approach for Bangladesh by exploring the potential of biogas production from MSW. Distinctly, it fills the research gap by providing a detailed techno-economic and environmental analysis of decentralized fixed-dome anaerobic digestion facilities in the urban context of Chittagong, Bangladesh, a domain previously underexplored. Our findings demonstrate the feasibility of converting MSW into a renewable energy source, offering an innovative solution that simultaneously tackles waste management and energy generation challenges. Each proposed plant showcases the capability to generate 536 m³ of biogas daily, sufficient to power a 50 kW gas engine and supply 44 households, thereby contributing significantly to urban waste reduction and CO2 emissions mitigation by approximately 500 tons monthly. The economic analysis reveals an attractive investment payback period of two years, underscoring the model's viability and its potential as a replicable framework for similar urban settings grappling with waste management crises. This study not only bridges a critical knowledge gap but also introduces a novel, sustainable waste-to-energy model, marking a pivotal step towards achieving energy security and environmental sustainability in developing nations.
RESUMEN
A numerical analysis of a CdTe/Si dual-junction solar cell in terms of defect density introduced at various defect energy levels in the absorber layer is provided. The impact of defect concentration is analyzed against the thickness of the CdTe layer, and variation of the top and bottom cell bandgaps is studied. The results show that CdTe thin film with defects density between 1014 and 1015 cm-3 is acceptable for the top cell of the designed dual-junction solar cell. The variations of the defect concentrations against the thickness of the CdTe layer indicate that the open circuit voltage, short circuit current density, and efficiency (Æ) are more affected by the defect density at higher CdTe thickness. In contrast, the Fill factor is mainly affected by the defect density, regardless of the thin film's thickness. An acceptable defect density of up to 1015 cm-3 at a CdTe thickness of 300 nm was obtained from this work. The bandgap variation shows optimal results for a CdTe with bandgaps ranging from 1.45 to 1.7 eV in tandem with a Si bandgap of about 1.1 eV. This study highlights the significance of tailoring defect density at different energy levels to realize viable CdTe/Si dual junction tandem solar cells. It also demonstrates how the impact of defect concentration changes with the thickness of the solar cell absorber layer.
RESUMEN
Wind turbine fires pose a significant global problem, leading to substantial financial losses. However, due to limited open discussions and lax regulations in the wind power industry, progress in addressing this issue has been hindered. This study aims to shed light on the fire risks associated with wind turbine nacelles and blades, while also exploring preventive measures and the latest fire detection and extinguishing technologies. The research conducted in this study involves a comprehensive investigation of various case studies, utilizing causal examination to identify common failure forms and their roles in fire incidents. Additionally, typical hazards, with a focus on fire incidents, in wind turbines are diagnosed. The primary causes of these fires were determined to be lightning strikes and hydraulic faults, often exacerbated by the presence of combustible materials. To conclude, the study includes a survey that encompasses education, knowledge analysis, and real-life accident experiences to assess fire risks and prevention measures in wind turbines. The participation of experts from wind farms, including those from the People's Republic of Bangladesh and other countries, adds valuable insights. The findings from this study serve as a crucial resource for enhancing safety standards and mitigating fire incidents within the wind power industry.
RESUMEN
The study used magnetron sputtering to investigate the growth of cadmium telluride (CdTe) thin films on surface treated n-type silicon (n-Si) substrates. The n-Si substrates were textured using potassium hydroxide (KOH) before the sputter deposition of CdTe. This was followed by cadmium chloride treatment to reduce the strain at the interface of CdTe and Si, which is caused by the incompatible lattice and thermal expansion mismatch (CTE). X-ray diffraction (XRD) analysis showed that the lowest FWHM and dislocation densities were obtained for CdCl2/CdTe/txt-nSi, which aligns with the scanning electron microscopy (SEM) results. In the SEM images, the interface bonding between the CdTe and Si surfaces was visible in the cross-sections, and the top-view images revealed sputtered CdTe thin films conforming to the patterns of pyramidal textured Si as an engineered surface to capture more light to maximize absorption in the CdTe/Si tandem design. The Energy dispersive X-ray (EDX) results showed that all the CdTe deposited on textured n-Si exhibited more Te atoms than Cd atoms, irrespective of the CdCl2 treatment. The presented results suggest that the texturization and CdCl2 treatment improved the morphology and grain boundary passivation of the sputtered CdTe. The adhesiveness of CdTe on the n-Si substrate was also significantly enhanced. Our findings further demonstrate that proper surface treatment of the Si substrate can greatly improve the quality of CdTe grown on Si by reducing the strain that occurs during the growth process. This study demonstrates a valuable method for enhancing the integration of CdTe with Si for two-junction tandem solar cell applications.
RESUMEN
Recent advancements in CdTe solar cell technology have introduced the integration of flexible substrates, providing lightweight and adaptable energy solutions for various applications. Some of the notable applications of flexible solar photovoltaic technology include building integrated photovoltaic systems (BIPV), transportation, aerospace, satellites, etc. However, despite this advancement, certain issues regarding metal and p-CdTe remained unresolved. Besides, the fabrication of a full-working device on flexible glass is challenging and requires special consideration due to the unstable morphology and structural properties of deposited film on ultra-thin glass substrates. The existing gap in knowledge about the vast potential of flexible CdTe solar cells on UTG substrates and their possible applications blocks their full capacity utilization. Hence, this comprehensive review paper exclusively concentrates on the obstacles associated with the implementation of CdTe solar cells on UTG substrates with a potential back surface field (BSF) layer. The significance of this study lies in its meticulous identification and analysis of the substantial challenges associated with integrating flexible CdTe onto UTG substrates and leveraging Cu-doped ZnTe as a potential BSF layer to enhance the performance of flexible CdTe solar cells.
RESUMEN
Antimony trisulfide (Sb2Se3), a non-toxic and accessible substance, has possibilities as a material for use in solar cells. The current study numerically analyses Sb2Se3 solar cells through the program Solar Cell Capacitance Simulator (SCAPS). A detailed simulation and analysis of the influence of the Sb2Se3 layer's thickness, defect density, band gap, energy level, and carrier concentration on the devices' performance are carried out. The results indicate that a good device performance is guaranteed with the following values in the Sb2Se3 layer: an 800 optimal thickness for the Sb2Se3 absorber; less than 1015 cm-3 for the absorber defect density; a 1.2 eV optimum band gap; a 0.1 eV energy level (above the valence band); and a 1014 cm-3 carrier concentration. The highest efficiency of 30% can be attained following optimization of diverse parameters. The simulation outcomes offer beneficial insights and directions for designing and engineering Sb2Se3 solar cells.
RESUMEN
Conventional wireless sensor networks (WSNs) in smart home-building (SHB) are typically driven by batteries, limiting their lifespan and the maximum number of deployable units. To satisfy the energy demand for the next generation of SHB which can interconnect WSNs to make the internet of smart home-building (IoSHB), this study introduces the design and implementation of a 250 mW to 2.3 W energy harvesting device. The proposed device is dynamically autonomous owing to the integration of embedded solar photovoltaic (PV) modules and power storage through a supercapacitor (SC; 5 V, 0.47 F) capable of powering WSNs for 95 s (up to 4.11 V). The deployed device can harvest indoor and outdoor ambient light at a minimum illumination of 50 lux and a maximum illumination of 200 lux. Moreover, the proposed system supports wireless fidelity (Wi-Fi) and Bluetooth Low Energy (BLE) to do data transfer to a webserver as a complete internet of things (IoT) device. A customized android dashboard is further developed for data monitoring on a smartphone. All in all, this self-powered WSN node can interface with the users of the SHBs for displaying ambient data, which demonstrates its promising applicability and stability.
RESUMEN
Organic-inorganic perovskite solar cells (PSCs) have recently emerged as a potential candidate for large-scale and low-cost photovoltaic devices. However, the technology is still susceptible to degradation issues and toxicity concerns due to the presence of lead (Pb). Therefore, investigation on ideal methods to deal with PSC wastes once the device attains its end-of-life is crucial and to recycle the components within the cell is the most cost effective and energy effective method by far. This paper reported on a layer-by-layer extraction approach to recycle the fluorine-doped tin oxide (FTO) coated glass substrate which is the most expensive component in the device architecture of mesoporous planar PSC. By adapting the sequential removal of each layer, chemical properties of individual components, including spiro-OMeTAD and gold can be preserved, enabling the material to be easily reused. It also ensured that the toxic Pb component could be isolated without contaminating other materials. The removal of all individual layers allows the retrieval of FTO conductive glass which can be used in various applications that are not only restricted to photovoltaics. Comparison of electrical, morphological and physical properties of recycled FTO glasses to commercial ones revealed minimal variations. This confirmed that the recycling approach was useful in retrieving the substrate without affecting its physicochemical properties.