Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446320

RESUMEN

Achieving high-yield potential is always the ultimate objective of any breeding program. However, various abiotic stresses such as salinity, drought, cold, flood, and heat hampered rice productivity tremendously. Salinity is one of the most important abiotic stresses that adversely affect rice grain yield. The present investigation was undertaken to dissect new genetic loci, which are responsible for salt tolerance at the early seedling stage in rice. A bi-parental mapping population (F2:3) was developed from the cross between BRRI dhan28/Akundi, where BRRI dhan28 (BR28) is a salt-sensitive irrigated (boro) rice mega variety and Akundi is a highly salinity-tolerant Bangladeshi origin indica rice landrace that is utilized as a donor parent. We report reliable and stable QTLs for salt tolerance from a common donor (Akundi) irrespective of two different genetic backgrounds (BRRI dhan49/Akundi and BRRI dhan28/Akundi). A robust 1k-Rice Custom Amplicon (1k-RiCA) SNP marker genotyping platform was used for genome-wide analysis of this bi-parental population. After eliminating markers with high segregation distortion, 886 polymorphic SNPs built a genetic linkage map covering 1526.5 cM of whole rice genome with an average SNP density of 1.72 cM for the 12 genetic linkage groups. A total of 12 QTLs for nine different salt tolerance-related traits were identified using QGene and inclusive composite interval mapping of additive and dominant QTL (ICIM-ADD) under salt stress on seven different chromosomes. All of these 12 new QTLs were found to be unique, as no other map from the previous study has reported these QTLs in the similar chromosomal location and found them different from extensively studied Saltol, SKC1, OsSalT, and salT locus. Twenty-eight significant digenic/epistatic interactions were identified between chromosomal regions linked to or unlinked to QTLs. Akundi acts like a new alternate donor source of salt tolerance except for other usually known donors such as Nona Bokra, Pokkali, Capsule, and Hasawi used in salt tolerance genetic analysis and breeding programs worldwide, including Bangladesh. Integration of the seven novel, reliable, stable, and background independent salinity-resilient QTLs (qSES1, qSL1, qRL1, qSUR1, qSL8, qK8, qK1) reported in this investigation will expedite the cultivar development that is highly tolerant to salt stress.


Asunto(s)
Oryza , Oryza/genética , Polimorfismo de Nucleótido Simple , Salinidad , Fitomejoramiento , Sitios de Carácter Cuantitativo
2.
Ann Bot ; 117(6): 1083-97, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27063367

RESUMEN

BACKGROUND AND AIMS: Agricultural productivity is increasingly being affected by the build-up of salinity in soils and water worldwide. The genetic base of salt-tolerant rice donors being used in breeding is relatively narrow and needs broadening to breed varieties with wider adaptation to salt-affected areas. This study evaluated a large set of rice accessions of diverse origins to identify and characterize novel sources of salt tolerance. METHODS: Diversity analysis was performed on 107 germplasm accessions using a genome-wide set of 376 single-nucleotide polymorphism (SNP) markers, along with characterization of allelic diversity at the major quantitative trait locus Saltol Sixty-nine accessions were further evaluated for physiological traits likely associated with responses to salt stress during the seedling stage. KEY RESULTS: Three major clusters corresponding to the indica, aus and aromatic subgroups were identified. The largest group was indica, with the salt-tolerant Pokkali accessions in one sub-cluster, while a set of Bangladeshi landraces, including Akundi, Ashfal, Capsule, Chikirampatnai and Kutipatnai, were in a different sub-cluster. A distinct aus group close to indica contained the salt-tolerant landrace Kalarata, while a separate aromatic group closer to japonica rice contained a number of traditional, but salt-sensitive Bangladeshi landraces. These accessions have different alleles at the Saltol locus. Seven landraces - Akundi, Ashfal, Capsule, Chikirampatnai, Jatai Balam, Kalarata and Kutipatnai - accumulated less Na and relatively more K, maintaining a lower Na/K ratio in leaves. They effectively limit sodium transport to the shoot. CONCLUSIONS: New salt-tolerant landraces were identified that are genetically and physiologically distinct from known donors. These landraces can be used to develop better salt-tolerant varieties and could provide new sources of quantitative trait loci/alleles for salt tolerance for use in molecular breeding. The diversity observed within this set and in other donors suggests multiple mechanisms that can be combined for higher salt tolerance.


Asunto(s)
Oryza/fisiología , Polimorfismo de Nucleótido Simple , Tolerancia a la Sal/genética , África Occidental , Alelos , Bangladesh , Membrana Celular/química , Variación Genética , India , Oryza/genética , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Estomas de Plantas/química , Estomas de Plantas/fisiología , Potasio/metabolismo , Potasio/farmacocinética , Salinidad , Tolerancia a la Sal/fisiología , Sodio/metabolismo , Sodio/farmacocinética , Sri Lanka
3.
PLoS One ; 19(1): e0294573, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38241319

RESUMEN

Salinity variations are the main reason for rice yield fluctuations in salt-prone regions throughout the dry season (Boro season). Plant breeders must produce new rice varieties that are more productive, salt tolerant, and stable across a variety of settings to ensure Bangladesh's food sustainability. To assess the yield and stability, we used fifteen rice genotypes containing two tolerant checks BRRI dhan67, Binadhan-10 and the popular Boro rice variety BRRI dhan28 in different salinity "hotspot" in three successive years followed by additive main effects and multiplicative interaction (AMMI) model utilizing a randomized complete block (RCB) design with two replications. Parents selection was done based on estimated breeding values (EBVs). Eight parents with high EBVs (IR83484-3-B-7-1-1-1, IR87870-6-1-1-1-1-B, BR8992-B-18-2-26, HHZ5-DT20-DT2-DT1, HHZ12-SAL2-Y3-Y2, BR8980-B-1-3-5, BRRI dhan67, and Binadhan-10) might be used to develop new segregating breeding materials. Based on farmer preferences and grain acceptability, three genotypes (IR83484-3-B-7-1-1-1, HHZ5-DT20-DT2-DT1, and HHZ12-SAL2-Y3-Y2) were the winning and best ones. The above three genotypes in the proposed variety trial showed significantly higher yields than the respective check varieties, high salinity tolerance ability, and good grain quality parameters. Among them, HHZ5-DT20-DT2-DT1 and IR83484-3-B-7-1-1-1 harbored eight and four QTL/genes that regulate the valuable traits revealed through 20 SNP genotyping. Finally, two genotypes IR83484-3-B-7-1-1-1 and HHZ5-DT20-DT2-DT1 were released as high salinity-tolerant rice varieties BRRI dhan97 and BRRI dhan99, respectively in Bangladesh for commercial cultivation for sustaining food security and sustainability.


Asunto(s)
Oryza , Oryza/genética , Bangladesh , Fitomejoramiento , Fenotipo , Clima
4.
Rice (N Y) ; 12(1): 63, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31410650

RESUMEN

BACKGROUND: Salinity is one of the most widespread abiotic stresses affecting rice productivity worldwide. The purpose of this study was to establish the relative importance of different traits associated with salinity tolerance in rice and to identify new quantitative trait loci (QTL) conferring tolerance to salinity at seedling stage. A total of 231 F2:3 plants derived from a cross between a sensitive variety BRRI dhan29 (BR29 hereafter) and Capsule, a salt tolerant Bangladeshi indica landrace, were evaluated under salt stress in a phytotron. RESULTS: Out of the 231 F2 plants, 47 highly tolerant and 47 most sensitive lines were selected, representing the two extreme tails of the phenotypic distribution. These 94 plants were genotyped for 105 simple sequence repeat (SSR) and insertion/deletion (InDel) markers. A genetic linkage map spanning approximately 1442.9 cM of the 12 linkage groups with an average marker distance of 13.7 cM was constructed. QTL were identified on the long arm of chromosome 1 for Na+ concentration, K+ concentration, Na+-K+ ratio and survival; chromosome 3 for Na+ concentration, survival and overall phenotypic evaluation using the Standard Evaluation system (SES); and chromosome 5 for SES. A total of 6 pairwise epistatic interactions were also detected between QTL-linked and QTL-unlinked regions. Graphical genotyping indicated an association between the phenotypes of the extreme families and their QTL genotypes. Path coefficient analysis revealed that Na+ concentration, survival, Na+-K+ ratio and the overall phenotypic performance (SES score) are the major traits associated with salinity tolerance of Capsule. CONCLUSIONS: Capsule provides an alternative source of salinity tolerance aside from Pokkali and Nona Bokra, the two Indian salt tolerant landraces traditionally used for breeding salt tolerant rice varieties. Pyramiding the new QTL identified in this study with previously discovered loci, such as Saltol, will facilitate breeding varieties that are highly tolerant of salt stress.

5.
Rice (N Y) ; 10(1): 47, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29098463

RESUMEN

BACKGROUND: Salinity is one of the most severe and widespread abiotic stresses that affect rice production. The identification of major-effect quantitative trait loci (QTLs) for traits related to salinity tolerance and understanding of QTL × environment interactions (QEIs) can help in more precise and faster development of salinity-tolerant rice varieties through marker-assisted breeding. Recombinant inbred lines (RILs) derived from IR29/Hasawi (a novel source of salinity) were screened for salinity tolerance in the IRRI phytotron in the Philippines (E1) and in two other diverse environments in Senegal (E2) and Tanzania (E3). QTLs were mapped for traits related to salinity tolerance at the seedling stage. RESULTS: The RILs were genotyped using 194 polymorphic SNPs (single nucleotide polymorphisms). After removing segregation distortion markers (SDM), a total of 145 and 135 SNPs were used to construct a genetic linkage map with a length of 1655 and 1662 cM, with an average marker density of 11.4 cM in E1 and 12.3 cM in E2 and E3, respectively. A total of 34 QTLs were identified on 10 chromosomes for five traits using ICIM-ADD and segregation distortion locus (SDL) mapping (IM-ADD) under salinity stress across environments. Eight major genomic regions on chromosome 1 between 170 and 175 cM (qSES1.3, qSES1.4, qSL1.2, qSL1.3, qRL1.1, qRL1.2, qFWsht1.2, qDWsht1.2), chromosome 4 at 32 cM (qSES4.1, qFWsht4.2, qDWsht4.2), chromosome 6 at 115 cM (qFWsht6.1, qDWsht6.1), chromosome 8 at 105 cM (qFWsht8.1, qDWsht8.1), and chromosome 12 at 78 cM (qFWsht12.1, qDWsht12.1) have co-localized QTLs for the multiple traits that might be governing seedling stage salinity tolerance through multiple traits in different phenotyping environments, thus suggesting these as hot spots for tolerance of salinity. Forty-nine and 30 significant pair-wise epistatic interactions were detected between QTL-linked and QTL-unlinked regions using single-environment and multi-environment analyses. CONCLUSIONS: The identification of genomic regions for salinity tolerance in the RILs showed that Hasawi possesses alleles that are novel for salinity tolerance. The common regions for the multiple QTLs across environments as co-localized regions on chromosomes 1, 4, 6, 8, and 12 could be due to linkage or pleiotropic effect, which might be helpful for multiple QTL introgression for marker-assisted breeding programs to improve the salinity tolerance of adaptive and popular but otherwise salinity-sensitive rice varieties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA