Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Virol ; 93(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31142668

RESUMEN

Dynamin GTPases, best known for their role in membrane fission of endocytic vesicles, provide a target for viruses to be exploited during endocytic uptake. Recently, we found that entry of herpes simplex virus 1 (HSV-1) into skin cells depends on dynamin, although our results supported that viral internalization occurs via both direct fusion with the plasma membrane and via endocytic pathways. To further explore the role of dynamin for efficient HSV-1 entry, we utilized conditional dynamin 1 and dynamin 2 double-knockout (DKO) fibroblasts as an experimental tool. Strikingly, HSV-1 entered control and DKO fibroblasts with comparable efficiencies. For comparison, we infected DKO cells with Semliki Forest virus, which is known to adopt clathrin-mediated endocytosis as its internalization pathway, and observed efficient virus entry. These results support the notion that the DKO cells provide alternative pathways for viral uptake. Treatment of cells with the dynamin inhibitor dynasore confirmed that HSV-1 entry depended on dynamin in the control fibroblasts. As expected, dynasore did not interfere with viral entry into DKO cells. Electron microscopy of HSV-1-infected cells suggests viral entry after fusion with the plasma membrane and by endocytosis in both dynamin-expressing and dynamin-deficient cells. Infection at low temperatures where endocytosis is blocked still resulted in HSV-1 entry, although at a reduced level, which suggests that nonendocytic pathways contribute to successful entry. Overall, our results strengthen the impact of dynamin for HSV-1 entry, as only cells that adapt to the lack of dynamin allow dynamin-independent entry.IMPORTANCE The human pathogen herpes simplex virus 1 (HSV-1) can adapt to a variety of cellular pathways to enter cells. In general, HSV-1 is internalized by fusion of its envelope with the plasma membrane or by endocytic pathways, which reflects the high adaptation to differences in its target cells. The challenges are to distinguish whether multiple or only one of these internalization pathways leads to successful entry and, furthermore, to identify the mode of viral uptake. In this study, we focused on dynamin, which promotes endocytic vesicle fission, and explored how the presence and absence of dynamin can influence viral entry. Our results support the idea that HSV-1 entry into mouse embryonic fibroblasts depends on dynamin; however, depletion of dynamin still allows efficient viral entry, suggesting that alternative pathways present upon dynamin depletion can accomplish viral internalization.


Asunto(s)
Dinamina II/genética , Dinamina I/genética , Fibroblastos/metabolismo , Fibroblastos/virología , Herpes Simple/genética , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Internalización del Virus , Animales , Células Cultivadas , Endocitosis , Técnicas de Silenciamiento del Gen , Predisposición Genética a la Enfermedad , Interacciones Huésped-Patógeno/genética , Humanos , Ratones , Virus de los Bosques Semliki/fisiología
2.
J Virol ; 91(22)2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28878080

RESUMEN

Oral mucosa is one of the main target tissues of the human pathogen herpes simplex virus 1 (HSV-1). How the virus overcomes the protective epithelial barriers and penetrates the tissue to reach its receptors and initiate infection is still unclear. Here, we established an ex vivo infection assay with human oral mucosa that allows viral entry studies in a natural target tissue. The focus was on the susceptibility of keratinocytes in the epithelium and the characterization of cellular receptors that mediate viral entry. Upon ex vivo infection of gingiva or vestibular mucosa, we observed that intact human mucosa samples were protected from viral invasion. In contrast, the basal layer of the oral epithelium was efficiently invaded once the connective tissue and the basement membrane were removed. Later during infection, HSV-1 spread from basal keratinocytes to upper layers, demonstrating the susceptibility of the stratified squamous epithelium to HSV-1. The analysis of potential receptors revealed nectin-1 on most mucosal keratinocytes, whereas herpesvirus entry mediator (HVEM) was found only on a subpopulation of cells, suggesting that nectin-1 acts as primary receptor for HSV-1 in human oral mucosa. To mimic the supposed entry route of HSV-1 via microlesions in vivo, we mechanically wounded the mucosa prior to infection. While we observed a limited number of infected keratinocytes in some wounded mucosa samples, other samples showed no infected cells. Thus, we conclude that mechanical wounding of mucosa is insufficient for the virus to efficiently overcome epithelial barriers and to make entry-mediating receptors accessible.IMPORTANCE To invade the target tissue of its human host during primary infection, herpes simplex virus (HSV) must overcome the epithelial barriers of mucosa, skin, or cornea. For most viruses, the mechanisms underlying the invasion into the target tissues of their host organism are still open. Here, we established an ex vivo infection model of human oral mucosa to explore how HSV can enter its target tissue. Our results demonstrate that intact mucosa samples and even compromised tissue allow only very limited access of HSV to keratinocytes. Detailed understanding of barrier functions is an essential precondition to unravel how HSV bypasses the barriers and approaches its receptors in tissue and why it is beneficial for the virus to use a cell-cell adhesion molecule, such as nectin-1, as a receptor.


Asunto(s)
Herpes Simple/inmunología , Herpesvirus Humano 1/inmunología , Inmunidad Innata , Queratinocitos/inmunología , Mucosa Bucal/inmunología , Femenino , Herpes Simple/patología , Humanos , Queratinocitos/patología , Queratinocitos/virología , Masculino , Mucosa Bucal/patología , Mucosa Bucal/virología
3.
J Virol ; 89(18): 9407-16, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26136572

RESUMEN

UNLABELLED: The cellular proteins nectin-1 and herpesvirus entry mediator (HVEM) can both mediate the entry of herpes simplex virus 1 (HSV-1). We have recently shown how these receptors contribute to infection of skin by investigating HSV-1 entry into murine epidermis. Ex vivo infection studies reveal nectin-1 as the primary receptor in epidermis, whereas HVEM has a more limited role. Although the epidermis represents the outermost layer of skin, the contribution of nectin-1 and HVEM in the underlying dermis is still open. Here, we analyzed the role of each receptor during HSV-1 entry in murine dermal fibroblasts that were deficient in expression of either nectin-1 or HVEM or both receptors. Because infection was not prevented by the absence of either nectin-1 or HVEM, we conclude that they can act as alternative receptors. Although HVEM was found to be highly expressed on fibroblasts, entry was delayed in nectin-1-deficient cells, suggesting that nectin-1 acts as the more efficient receptor. In the absence of both receptors, entry was strongly delayed leading to a much reduced viral spread and virus production. These results suggest an unidentified cellular component that acts as alternate but inefficient receptor for HSV-1 on dermal fibroblasts. Characterization of the cellular entry mechanism suggests that HSV-1 can enter dermal fibroblasts both by direct fusion with the plasma membrane and via endocytic vesicles and that this is not dependent on the presence or absence of nectin-1. Entry was also shown to require dynamin and cholesterol, suggesting comparable entry pathways in keratinocytes and dermal fibroblasts. IMPORTANCE: Herpes simplex virus (HSV) is a human pathogen which infects its host via mucosal surfaces or abraded skin. To understand how HSV-1 overcomes the protective barrier of mucosa or skin and reaches its receptors in tissue, it is essential to know which receptors contribute to the entry into individual skin cells. Previously, we have explored the contribution of nectin-1 and herpesvirus entry mediator (HVEM) as receptors for HSV-1 entry into murine epidermis, where keratinocytes form the major cell type. Since the underlying dermis consists primarily of fibroblasts, we have now extended our study of HSV-1 entry to dermal fibroblasts isolated from nectin-1- or HVEM-deficient mice or from mice deficient in both receptors. Our results demonstrate a role for both nectin-1 and HVEM as receptors and suggest a further receptor which appears much less efficient.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Fibroblastos/metabolismo , Herpes Simple/metabolismo , Herpesvirus Humano 1/fisiología , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Internalización del Virus , Animales , Moléculas de Adhesión Celular/genética , Células Cultivadas , Dermis/metabolismo , Dermis/patología , Dermis/virología , Epidermis/metabolismo , Epidermis/patología , Epidermis/virología , Fibroblastos/patología , Fibroblastos/virología , Herpes Simple/genética , Herpes Simple/patología , Humanos , Ratones , Ratones Noqueados , Nectinas , Miembro 14 de Receptores del Factor de Necrosis Tumoral/genética
4.
J Virol ; 89(1): 262-74, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25320325

RESUMEN

UNLABELLED: Skin keratinocytes represent a primary entry site for herpes simplex virus 1 (HSV-1) in vivo. The cellular proteins nectin-1 and herpesvirus entry mediator (HVEM) act as efficient receptors for both serotypes of HSV and are sufficient for disease development mediated by HSV-2 in mice. How HSV-1 enters skin and whether both nectin-1 and HVEM are involved are not known. We addressed the impact of nectin-1 during entry of HSV-1 into murine epidermis and investigated the putative contribution of HVEM. Using ex vivo infection of murine epidermis, we showed that HSV-1 entered the basal keratinocytes of the epidermis very efficiently. In nectin-1-deficient epidermis, entry was strongly reduced. Almost no entry was observed, however, in nectin-1-deficient keratinocytes grown in culture. This observation correlated with the presence of HVEM on the keratinocyte surface in epidermis and with the lack of HVEM expression in nectin-1-deficient primary keratinocytes. Our results suggest that nectin-1 is the primary receptor in epidermis, while HVEM has a more limited role. For primary murine keratinocytes, on which nectin-1 acts as a single receptor, electron microscopy suggested that HSV-1 can enter both by direct fusion with the plasma membrane and via endocytic vesicles. Thus, we concluded that nectin-1 directs internalization into keratinocytes via alternative pathways. In summary, HSV-1 entry into epidermis was shown to strongly depend on the presence of nectin-1, but the restricted presence of HVEM can potentially replace nectin-1 as a receptor, illustrating the flexibility employed by HSV-1 to efficiently invade tissue in vivo. IMPORTANCE: Herpes simplex virus (HSV) can cause a range of diseases in humans, from uncomplicated mucocutaneous lesions to life-threatening infections. The skin is one target tissue of HSV, and the question of how the virus overcomes the protective skin barrier and penetrates into the tissue to reach its receptors is still open. Previous studies analyzing entry into cells grown in vitro revealed nectin-1 and HVEM as HSV receptors. To explore the contributions of nectin-1 and HVEM to entry into a natural target tissue, we established an ex vivo infection model. Using nectin-1- or HVEM-deficient mice, we demonstrated the distinct involvement of nectin-1 and HVEM for HSV-1 entry into epidermis and characterized the internalization pathways. Such advances in understanding the involvement of receptors in tissue are essential preconditions for unraveling HSV invasion of skin, which in turn will allow the development of antiviral reagents.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Herpesvirus Humano 1/fisiología , Interacciones Huésped-Patógeno , Queratinocitos/virología , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Receptores Virales/metabolismo , Internalización del Virus , Animales , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Nectinas , Piel/virología
5.
J Invest Dermatol ; 137(4): 884-893, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27939379

RESUMEN

Herpes simplex virus 1 has to overcome skin or mucosa barriers to infect its human host. The impact of the various barrier functions on successful viral invasion is not known. On ex vivo infection of murine skin, we observed efficient invasion only via the basal epidermal layer when the dermis was removed. Here, we investigated how wounding and intercellular junction formation control successful viral entry. After wounding of skin samples or removal of the stratum corneum, infected cells were rarely detected. On the basis of infection studies in epidermis from IFN-stimulated mice, we assume that mechanical wounding does not lead to an antiviral state that impedes infection. When we infected human skin equivalents, we observed entry only into unstratified keratinocytes or after wounding of fully stratified cultures. Reduced infection of keratinocytes after calcium-induced stratification confirmed the impact of junction formation. To assess the effect of functional tight junctions, stratified cultures of polarity regulator partitioning-defective-3- or E-cadherin-deficient keratinocytes were infected. As the number of infected cells strongly increased with enhanced paracellular permeability, we conclude that the formation of functional tight junctions interferes with viral entry indicating that next to the stratum corneum tight junctions are a major physical barrier for herpes simplex virus 1 invasion into tissue.


Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , Epitelio/metabolismo , Herpes Simple/patología , Herpesvirus Humano 1/patogenicidad , Heridas y Lesiones/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Rol , Sensibilidad y Especificidad , Uniones Estrechas/metabolismo , Heridas y Lesiones/virología
6.
J Vis Exp ; (102): e53046, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26325191

RESUMEN

To enter its human host, herpes simplex virus type 1 (HSV-1) must overcome the barrier of mucosal surfaces, skin, or cornea. HSV-1 targets keratinocytes during initial entry and establishes a primary infection in the epithelium, which is followed by latent infection of neurons. After reactivation, viruses can become evident at mucocutaneous sites that appear as skin vesicles or mucosal ulcers. How HSV-1 invades skin or mucosa and reaches its receptors is poorly understood. To investigate the invasion route of HSV-1 into epidermal tissue at the cellular level, we established an ex vivo infection model of murine epidermis, which represents the site of primary and recurrent infection in skin. The assay includes the preparation of murine skin. The epidermis is separated from the dermis by dispase II treatment. After floating the epidermal sheets on virus-containing medium, the tissue is fixed and infection can be visualized at various times postinfection by staining infected cells with an antibody against the HSV-1 immediate early protein ICP0. ICP0-expressing cells can be observed in the basal keratinocyte layer already at 1.5 hr postinfection. With longer infection times, infected cells are detected in suprabasal layers, indicating that infection is not restricted to the basal keratinocytes, but the virus spreads to other layers in the tissue. Using epidermal sheets of various mouse models, the infection protocol allows determining the involvement of cellular components that contribute to HSV-1 invasion into tissue. In addition, the assay is suitable to test inhibitors in tissue that interfere with the initial entry steps, cell-to-cell spread and virus production. Here, we describe the ex vivo infection protocol in detail and present our results using nectin-1- or HVEM-deficient mice.


Asunto(s)
Epidermis/virología , Herpes Simple/virología , Herpesvirus Humano 1/patogenicidad , Enfermedades Cutáneas Virales/virología , Animales , Ratones
7.
J Invest Dermatol ; 135(12): 3009-3016, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26203638

RESUMEN

Herpes simplex virus type 1 (HSV-1) invades its human host via the skin or mucosa. We aim to understand how HSV-1 overcomes the barrier function of the host epithelia, and for this reason, we established an ex vivo infection assay initially with murine skin samples. Here, we report how tissue has to be prepared to be susceptible to HSV-1 infection. Most efficient infection of the epidermis was achieved by removing the dermis. HSV-1 initially invaded the basal epidermal layer, and from there, spreading to the suprabasal layers was observed. Strikingly, in resting stage hair follicles, only the hair germ was infected, whereas the quiescent bulge stem cells (SCs) were resistant to infection. However, during the growth phase, infected cells were also detected in the activated bulge SCs. We demonstrated that cell proliferation was not a precondition for HSV-1 invasion, but SC activation was required as shown by infection of aberrantly activated bulge SCs in integrin-linked kinase (ILK)-deficient hair follicles. These results suggest that the status of the bulge SCs determines whether HSV-1 can reach its receptors, whereas the receptors on basal keratinocytes are accessible irrespective of their proliferation status.


Asunto(s)
Epidermis/virología , Herpesvirus Humano 1/patogenicidad , Animales , Ácido Edético/farmacología , Endopeptidasas/farmacología , Folículo Piloso/virología , Proteínas Inmediatas-Precoces/fisiología , Melanocitos/virología , Ratones , Ratones Endogámicos C57BL , Uniones Estrechas/fisiología , Ubiquitina-Proteína Ligasas/fisiología
8.
PLoS One ; 6(10): e25464, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22022400

RESUMEN

Herpes simplex virus type 1 (HSV-1) can enter cells via endocytic pathways or direct fusion at the plasma membrane depending on the cell line and receptor(s). Most studies into virus entry have used cultured fibroblasts but since keratinocytes represent the primary entry site for HSV-1 infection in its human host, we initiated studies to characterize the entry pathway of HSV-1 into human keratinocytes. Electron microscopy studies visualized free capsids in the cytoplasm and enveloped virus particles in vesicles suggesting viral uptake both by direct fusion at the plasma membrane and by endocytic vesicles. The ratio of the two entry modes differed in primary human keratinocytes and in the keratinocyte cell line HaCaT. Inhibitor studies further support a role for endocytosis during HSV-1 entry. Infection was inhibited by the cholesterol-sequestering drug methyl-ß-cyclodextrin, which demonstrates the requirement for host cholesterol during virus entry. Since the dynamin-specific inhibitor dynasore and overexpression of a dominant-negative dynamin mutant blocked infection, we conclude that the entry pathways into keratinocytes are dynamin-mediated. Electron microscopy studies confirmed that virus uptake is completely blocked when the GTPase activity of dynamin is inhibited. Ex vivo infection of murine epidermis that was treated with dynasore further supports the essential role of dynamin during entry into the epithelium. Thus, we conclude that HSV-1 can enter human keratinocytes by alternative entry pathways that require dynamin and host cholesterol.


Asunto(s)
Colesterol/metabolismo , Dinaminas/metabolismo , Herpesvirus Humano 1/metabolismo , Queratinocitos/metabolismo , Queratinocitos/virología , Internalización del Virus , Cloruro de Amonio/farmacología , Animales , Células Cultivadas , Colesterol/deficiencia , Endocitosis/efectos de los fármacos , Epidermis/efectos de los fármacos , Epidermis/patología , Epidermis/virología , Herpes Simple/patología , Herpes Simple/virología , Humanos , Hidrazonas/farmacología , Queratinocitos/efectos de los fármacos , Queratinocitos/ultraestructura , Ratones , Proteínas Mutantes/metabolismo , Transfección , Internalización del Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA