Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 424(2): 274-8, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22750003

RESUMEN

Cytoglobin, a new member of the mammalian heme-globin family has been shown to bind oxygen and to have cell protective properties in vitro. Cytoglobin is specifically expressed in a subpopulation of brain neurons. Based on hypoxia-induced up regulation and proposed scavenging of reactive oxygen species Cytoglobin was suggested as a candidate for pharmaceutical stroke treatment. Since production of reactive oxygen species is a hallmark of ischemia, we hypothesized that Cytoglobin expression would be increased and that Cytoglobin expressing neurons would be spared after ischemic injury. Twenty male C57BL/6J mice were used in the experimental design. Ten were sham operated and ten were given permanent middle cerebral artery occlusion (pMCAo). All animals were euthanized after 24h. From each group, three animals were used for histology and seven for QRT-PCR and western blotting. Immunohistochemical examination of the ischemic penumbra revealed neither changes in Cytoglobin immunoreactivity nor any changes in expression in the necrotic infarct area. The lack of expression change was confirmed by western blotting and QRT-PCR showing no significant difference between sham and pMCAo operated mice. This suggests that Cytoglobin is likely not important for global neuronal protection following ischemia and the role of Cytoglobin in relation to endogenous neuroprotection remains unresolved.


Asunto(s)
Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/metabolismo , Globinas/biosíntesis , Arteria Cerebral Media/fisiopatología , Accidente Cerebrovascular/fisiopatología , Actinas/biosíntesis , Actinas/genética , Animales , Corteza Cerebral/patología , Citoglobina , Globinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Accidente Cerebrovascular/patología
2.
Endocrinology ; 157(9): 3482-92, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27580810

RESUMEN

Neurotensin (NT) is a peptide expressed in the brain and in the gastrointestinal tract. Brain NT inhibits food intake, but the effects of peripheral NT are less investigated. In this study, peripheral NT decreased food intake in both mice and rats, which was abolished by a NT antagonist. Using c-Fos immunohistochemistry, we found that peripheral NT activated brainstem and hypothalamic regions. The anorexigenic effect of NT was preserved in vagotomized mice but lasted shorter than in sham-operated mice. This in combination with a strong increase in c-Fos activation in area postrema after ip administration indicates that NT acts both through the blood circulation and the vagus. To improve the pharmacokinetics of NT, we developed a pegylated NT peptide, which presumably prolonged the half-life, and thus, the effect on feeding was extended compared with native NT. On a molecular level, the pegylated NT peptide increased proopiomelanocortin mRNA in the arcuate nucleus. We also investigated the importance of NT for the decreased food intake after gastric bypass surgery in a rat model of Roux-en-Y gastric bypass (RYGB). NT was increased in plasma and in the gastrointestinal tract in RYGB rats, and pharmacological antagonism of NT increased food intake transiently in RYGB rats. Taken together, our data suggest that NT is a metabolically active hormone, which contributes to the regulation of food intake.


Asunto(s)
Regulación del Apetito/efectos de los fármacos , Derivación Gástrica , Neurotensina/administración & dosificación , Animales , Ingestión de Alimentos/efectos de los fármacos , Femenino , Masculino , Ratones Endogámicos C57BL , Neurotensina/antagonistas & inhibidores , Neurotensina/sangre , Ratas Sprague-Dawley , Sacarosa , Vagotomía
3.
PLoS One ; 8(10): e76565, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098534

RESUMEN

BACKGROUND: Stroke is a major cause of death and severe disability, but effective treatments are limited. Neuroglobin, a neuronal heme-globin, has been advocated as a novel pharmacological target in combating stroke and neurodegenerative disorders based on cytoprotective properties. Using thoroughly validated antibodies and oligos, we give a detailed brain anatomical characterization of transgenic mice over expressing Neuroglobin. Moreover, using permanent middle artery occlusion the effect of elevated levels of Neuroglobin on ischemic damage was studied. Lastly, the impact of mouse strain genetic background on ischemic damage was investigated. PRINCIPAL FINDINGS: A four to five fold increase in Neuroglobin mRNA and protein expression was seen in the brain of transgenic mice. A ß-actin promoter was used to drive Neuroglobin over expression, but immunohistochemistry and in situ hybridization showed over expression to be confined to primarily the cortex, hippocampus, cerebellum, and only in neurons. The level and expression pattern of endogenous Neuroglobin was unaffected by insertion of the over expressing Ngb transgene. Neuroglobin over expression resulted in a significant reduction in infarct volume 24 hours after ischemia. Immunohistochemistry showed no selective sparing of Neuroglobin expressing cells in the ischemic core or penumbra. A significant difference in infarct volume was found between mice of the same strain, but from different colonies. SIGNIFICANCE: In contrast to some previous reports, Neuroglobin over expression is not global but confined to a few well-defined brain regions, and only in neurons. This study confirms previous reports showing a correlation between reduced infarct volume and elevated Neuroglobin levels, but underlines the need to study the likely contribution from compensatory mechanisms to the phenotype following a genetic perturbation. We also stress, that care should be taken when comparing results where different mouse strains and colonies have been used due to large genetic background contribution to the observed phenotype.


Asunto(s)
Infarto Encefálico/genética , Isquemia Encefálica/genética , Expresión Génica , Globinas/genética , Proteínas del Tejido Nervioso/genética , Fármacos Neuroprotectores/metabolismo , Transgenes , Actinas/genética , Actinas/metabolismo , Animales , Infarto Encefálico/metabolismo , Infarto Encefálico/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Cerebelo/metabolismo , Cerebelo/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Globinas/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neuroglobina , Neuronas/metabolismo , Neuronas/patología , Regiones Promotoras Genéticas , Especificidad de la Especie
4.
Comp Med ; 63(2): 105-13, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23582417

RESUMEN

Laboratory mice constitute an extensively used model to study the pathologic and functional outcomes of cerebral ischemic stroke. The middle cerebral artery occlusion (MCAO) model requires surgical intervention, which potentially can result in postsurgical pain and stress. In the present study, we investigated whether buprenorphine and meloxicam, at clinically relevant doses provided pain relief without altering infarct volume in male C57BL/6 mice. Common known side-effects of buprenorphine, including decreased food consumption, were noted after surgery in buprenorphine-treated mice, but these effects were brief and seen only during the treatment period. Fecal corticosterone metabolites did not differ significantly between the groups. In the present study, buprenorphine treatment did not alter infarction volume when compared with that of mice that did not receive analgesia. In contrast, meloxicam treatment significantly reduced infarct volume and may be a confounder if used as an analgesic during MCAO surgery. Furthermore, investigation of behavioral profiles by using an automated behavioral scoring system showed that rearing and sniffing behaviors decreased as infarct volume increased. This suggests that studies of exploratory behavior may aid in developing new markers of short-term stroke-related behavioral deficiencies in laboratory mice.


Asunto(s)
Analgésicos/uso terapéutico , Isquemia Encefálica/patología , Buprenorfina/uso terapéutico , Ratones Endogámicos C57BL , Dolor/veterinaria , Tiazinas/uso terapéutico , Tiazoles/uso terapéutico , Animales , Isquemia Encefálica/tratamiento farmacológico , Corticosterona/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Masculino , Meloxicam , Ratones , Dolor/tratamiento farmacológico , Manejo del Dolor/veterinaria , Proyectos de Investigación
5.
Exp Transl Stroke Med ; 4(1): 15, 2012 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-22901501

RESUMEN

BACKGROUND: Neuroglobin is considered to be a novel important pharmacological target in combating stroke and neurodegenerative disorders, although the mechanism by which this protection is accomplished remains an enigma. We hypothesized that if neuroglobin is directly involved in neuroprotection, then permanent cerebral ischemia would lead to larger infarct volumes in neuroglobin-null mice than in wild-type mice. METHODS: Using neuroglobin-null mice, we estimated the infarct volume 24 hours after permanent middle cerebral artery occlusion using Cavalieri's Principle, and compared the infarct volume in neuroglobin-null and wild-type mice. Neuroglobin antibody staining was used to examine neuroglobin expression in the infarct area of wild-type mice. RESULTS: Infarct volumes 24 hours after permanent middle cerebral artery occlusion were significantly smaller in neuroglobin-null mice than in wild-types (p < 0.01). Neuroglobin immunostaining of the penumbra area revealed no visible up-regulation of neuroglobin protein in ischemic wild-type mice when compared to uninjured wild-type mice. In uninjured wild-type mice, neuroglobin protein was seen throughout cortical layer II and sparsely in layer V. In contrast, no neuroglobin-immunoreactive neurons were observed in the aforementioned layers of the ischemia injured cortical area, or in the surrounding penumbra of ischemic wild-type mice. This suggests no selective sparing of neuroglobin expressing neurons in ischemia. CONCLUSIONS: Neuroglobin-deficiency resulted in reduced tissue infarction, suggesting that, at least at endogenous expression levels, neuroglobin in itself is non-protective against ischemic injury.

6.
PLoS One ; 6(12): e28160, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22164238

RESUMEN

BACKGROUND: Neuroglobin (Ngb), a neuron-specific globin that binds oxygen in vitro, has been proposed to play a key role in neuronal survival following hypoxic and ischemic insults in the brain. Here we address whether Ngb is required for neuronal survival following acute and prolonged hypoxia in mice genetically Ngb-deficient (Ngb-null). Further, to evaluate whether the lack of Ngb has an effect on hypoxia-dependent gene regulation, we performed a transcriptome-wide analysis of differential gene expression using Affymetrix Mouse Gene 1.0 ST arrays. Differential expression was estimated by a novel data analysis approach, which applies non-parametric statistical inference directly to probe level measurements. PRINCIPAL FINDINGS: Ngb-null mice were born in expected ratios and were normal in overt appearance, home-cage behavior, reproduction and longevity. Ngb deficiency had no effect on the number of neurons, which stained positive for surrogate markers of endogenous Ngb-expressing neurons in the wild-type (wt) and Ngb-null mice after 48 hours hypoxia. However, an exacerbated hypoxia-dependent increase in the expression of c-FOS protein, an immediate early transcription factor reflecting neuronal activation, and increased expression of Hif1A mRNA were observed in Ngb-null mice. Large-scale gene expression analysis identified differential expression of the glycolytic pathway genes after acute hypoxia in Ngb-null mice, but not in the wts. Extensive hypoxia-dependent regulation of chromatin remodeling, mRNA processing and energy metabolism pathways was apparent in both genotypes. SIGNIFICANCE: According to these results, it appears unlikely that the loss of Ngb affects neuronal viability during hypoxia in vivo. Instead, Ngb-deficiency appears to enhance the hypoxia-dependent response of Hif1A and c-FOS protein while also altering the transcriptional regulation of the glycolytic pathway. Bioinformatic analysis of differential gene expression yielded novel predictions suggesting that chromatin remodeling and mRNA metabolism are among the key regulatory mechanisms when adapting to prolonged hypoxia.


Asunto(s)
Regulación de la Expresión Génica , Globinas/deficiencia , Globinas/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/fisiología , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Animales , Encéfalo/metabolismo , Supervivencia Celular , Cromatina/metabolismo , Genotipo , Glucólisis , Hipoxia/metabolismo , Inmunohistoquímica/métodos , Masculino , Ratones , Ratones Transgénicos , Modelos Biológicos , Neuroglobina , Análisis de Secuencia por Matrices de Oligonucleótidos
7.
Am J Clin Nutr ; 90(3): 540-6, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19640959

RESUMEN

BACKGROUND: The neonatal brain is particularly vulnerable to imbalances in redox homeostasis because of rapid growth and immature antioxidant systems. Vitamin C has been shown to have a key function in the brain, and during states of deficiency it is able to retain higher concentrations of vitamin C than other organs. However, because neurons maintain one of the highest intracellular concentrations of vitamin C in the organism, the brain may still be more sensitive to deficiency despite these preventive measures. OBJECTIVE: The objective was to study the potential link between chronic vitamin C deficiency and neuronal damage in newborn guinea pigs. DESIGN: Thirty 6- to 7-d-old guinea pigs were randomly assigned to 2 groups to receive either a vitamin C-sufficient diet or the same diet containing a low concentration of vitamin C (but adequate to prevent scurvy) for 2 mo. Spatial memory was assessed by the Morris Water Maze, and hippocampal neuron numbers were quantified by stereologic techniques. RESULTS: The results showed a reduction in spatial memory (P < 0.05) and an increased time to first platform hit (P < 0.05) in deficient animals compared with controls. The deficient animals had a lower total number of neurons in hippocampal subdivisions (dentate gyrus, cornu ammonis 1, and cornu ammonis 2-3) than did the normal controls (P < 0.05). CONCLUSIONS: Our data show that vitamin C deficiency in early postnatal life results in impaired neuronal development and a functional decrease in spatial memory in guinea pigs. We speculate that this unrecognized effect of vitamin C deficiency may have clinical implications for high-risk individuals, such as in children born from vitamin C-deficient mothers.


Asunto(s)
Deficiencia de Ácido Ascórbico/complicaciones , Hipocampo/crecimiento & desarrollo , Trastornos de la Memoria/etiología , Memoria , Neurogénesis , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Ácido Ascórbico/sangre , Deficiencia de Ácido Ascórbico/fisiopatología , Conducta Animal/fisiología , Biomarcadores/sangre , Cobayas , Hipocampo/citología , Aprendizaje por Laberinto/fisiología , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA