Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Res Sq ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37886476

RESUMEN

Hemophilia-A (HA) is caused by heterogeneous loss-of-function factor (F)VIII gene (F8)-mutations and deficiencies in plasma-FVIII-activity that impair intrinsic-pathway-mediated coagulation-amplification. The standard-of-care for severe-HA-patients is regular infusions of therapeutic-FVIII-proteins (tFVIIIs) but ~30% develop neutralizing-tFVIII-antibodies called "FVIII-inhibitors (FEIs)" and become refractory. We used the PATH study and ImmunoChip to scan immune-mediated-disease (IMD)-genes for novel and/or replicated genomic-sequence-variations associated with baseline-FEI-status while accounting for non-independence of data due to genetic-relatedness and F8-mutational-heterogeneity. The baseline-FEI-status of 450 North American PATH subjects-206 with black-African-ancestry and 244 with white-European-ancestry-was the dependent variable. The F8-mutation-data and a genetic-relatedness matrix were incorporated into a binary linear-mixed model of genetic association with baseline-FEI-status. We adopted a gene-centric-association-strategy to scan, as candidates, pleiotropic-IMD-genes implicated in the development of either ³2 autoimmune-/autoinflammatory-disorders (AADs) or ³1 AAD and FEIs. Baseline-FEI-status was significantly associated with SNPs assigned to NOS2A (rs117382854; p=3.2E-6) and B3GNT2 (rs10176009; p=5.1E-6), which have functions in anti-microbial-/-tumoral-immunity. Among IMD-genes implicated in FEI-risk previously, we identified strong associations with CTLA4 assigned SNPs (p=2.2E-5). The F8-mutation-effect underlies ~15% of the total heritability for baseline-FEI-status. Additive genetic heritability and SNPs in IMD-genes account for >50% of the patient-specific variability in baseline-FEI-status. Race is a significant determinant independent of F8-mutation-effects and non-F8-genetics.

2.
Artículo en Inglés | WPRIM | ID: wpr-720160

RESUMEN

Natural Killer (NK) cells are the third population of lymphocyte in the mononuclear cell compartment that triggers first-line of defense against viral infection and tumor transformation. Historically, NK cells were thought of as components of innate immunity based on their intrinsic ability to spontaneously kill target cells independent of HLA antigen restriction. However, it is now clear that NK cells are quite sophisticated and use a highly specific and complex target cell recognition receptor system arbitrated via a multitude of inhibitory and activating receptors. Killer cell immunoglobulin-like receptors (KIR) are the key receptors of human NK cells development and function. To date, fourteen distinct KIRs have been identified: eight are inhibitory types, and six are activating types. The number and type of KIR genes present varies substantially between individuals. Inhibitory KIRs recognize distinct motifs of polymorphic HLA class I molecules. Upon engagement of their specific HLA class I ligands, inhibitory KIR dampen NK cell reactivity. In contrast, activating KIRs are believed to stimulate NK cell reactivity when they sense their ligands (unknown). KIR and HLA gene families map to different human chromosomes (19 and 6, respectively), and their independent segregation produces a wide diversity in the number and type of inherited KIR-HLA combinations, likely contributing to overall immune competency. Consistent with this hypothesis, certain combinations of KIR-HLA variants have been correlated with susceptibility to diseases as diverse as autoimmunity, viral infections, and cancer. This review summarizes our emerging understanding of KIR-HLA diversity in human health and disease.


Asunto(s)
Humanos , Autoinmunidad , Cromosomas Humanos , Inmunidad Innata , Células Asesinas Naturales , Ligandos , Linfocitos , Receptores KIR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA