Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nat Prod Rep ; 41(5): 834-859, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38323463

RESUMEN

Covering: up to 2023Specialized metabolite (SM) modifications and/or decorations, corresponding to the addition or removal of functional groups (e.g. hydroxyl, methyl, glycosyl or acyl group) to SM structures, contribute to the huge diversity of structures, activities and functions of seed and plant SMs. This review summarizes available knowledge (up to 2023) on SM modifications in Brassicaceae and their contribution to SM plasticity. We give a comprehensive overview on enzymes involved in the addition or removal of these functional groups. Brassicaceae, including model (Arabidopsis thaliana) and crop (Brassica napus, Camelina sativa) plant species, present a large diversity of plant and seed SMs, which makes them valuable models to study SM modifications. In this review, particular attention is given to the environmental plasticity of SM and relative modification and/or decoration enzymes. Furthermore, a spotlight is given to SMs and related modification enzymes in seeds of Brassicaceae species. Seeds constitute a large reservoir of beneficial SMs and are one of the most important dietary sources, providing more than half of the world's intake of dietary proteins, oil and starch. The seed tissue- and stage-specific expressions of A. thaliana genes involved in SM modification are presented and discussed in the context of available literature. Given the major role in plant phytochemistry, biology and ecology, SM modifications constitute a subject of study contributing to the research and development in agroecology, pharmaceutical, cosmetics and food industrial sectors.


Asunto(s)
Brassicaceae , Semillas , Semillas/metabolismo , Semillas/química , Brassicaceae/metabolismo , Brassicaceae/química , Estructura Molecular , Proteínas de Plantas/metabolismo
2.
Metab Eng ; 83: 86-101, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561149

RESUMEN

Predicting the plant cell response in complex environmental conditions is a challenge in plant biology. Here we developed a resource allocation model of cellular and molecular scale for the leaf photosynthetic cell of Arabidopsis thaliana, based on the Resource Balance Analysis (RBA) constraint-based modeling framework. The RBA model contains the metabolic network and the major macromolecular processes involved in the plant cell growth and survival and localized in cellular compartments. We simulated the model for varying environmental conditions of temperature, irradiance, partial pressure of CO2 and O2, and compared RBA predictions to known resource distributions and quantitative phenotypic traits such as the relative growth rate, the C:N ratio, and finally to the empirical characteristics of CO2 fixation given by the well-established Farquhar model. In comparison to other standard constraint-based modeling methods like Flux Balance Analysis, the RBA model makes accurate quantitative predictions without the need for empirical constraints. Altogether, we show that RBA significantly improves the autonomous prediction of plant cell phenotypes in complex environmental conditions, and provides mechanistic links between the genotype and the phenotype of the plant cell.


Asunto(s)
Arabidopsis , Modelos Biológicos , Arabidopsis/genética , Arabidopsis/metabolismo , Fotosíntesis , Fenotipo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Células Vegetales/metabolismo , Dióxido de Carbono/metabolismo
3.
Plant Cell Physiol ; 63(4): 550-564, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35139224

RESUMEN

In barley, incubation of primary dormant (D1) grains on water under conditions that do not allow germination, i.e. 30°C in air and 15°C or 30°C in 5% O2, induces a secondary dormancy (D2) expressed as a loss of the ability to germinate at 15°C in air. The aim of this study was to compare the proteome of barley embryos isolated from D1 grains and D2 ones after induction of D2 at 30°C or in hypoxia at 15°C or 30°C. Total soluble proteins were analyzed by 2DE gel-based proteomics, allowing the selection of 130 differentially accumulated proteins (DAPs) among 1,575 detected spots. According to the protein abundance profiles, the DAPs were grouped into six abundance-based similarity clusters. Induction of D2 is mainly characterized by a down-accumulation of proteins belonging to cluster 3 (storage proteins, proteases, alpha-amylase inhibitors and histone deacetylase HD2) and an up-accumulation of proteins belonging to cluster 4 (1-Cys peroxiredoxin, lipoxygenase2 and caleosin). The correlation-based network analysis for each cluster highlighted central protein hub. In addition, most of genes encoding DAPs display high co-expression degree with 19 transcription factors. Finally, this work points out that similar molecular events accompany the modulation of dormancy cycling by both temperature and oxygen, including post-translational, transcriptional and epigenetic regulation.


Asunto(s)
Hordeum , Ácido Abscísico/metabolismo , Epigénesis Genética , Germinación , Hordeum/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Oxígeno/metabolismo , Latencia en las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica , Semillas/metabolismo , Temperatura
4.
Plant Physiol ; 180(2): 1198-1218, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30948555

RESUMEN

Abscisic acid (ABA) is an important hormone for seed development and germination whose physiological action is modulated by its endogenous levels. Cleavage of carotenoid precursors by 9-cis epoxycarotenoid dioxygenase (NCED) and inactivation of ABA by ABA 8'-hydroxylase (CYP707A) are key regulatory metabolic steps. In Arabidopsis (Arabidopsis thaliana), both enzymes are encoded by multigene families, having distinctive expression patterns. To evaluate the genome-wide impact of ABA deficiency in developing seeds at the maturation stage when dormancy is induced, we used a nced2569 quadruple mutant in which ABA deficiency is mostly restricted to seeds, thus limiting the impact of maternal defects on seed physiology. ABA content was very low in nced2569 seeds, similar to the severe mutant aba2; unexpectedly, ABA Glc ester was detected in aba2 seeds, suggesting the existence of an alternative metabolic route. Hormone content in nced2569 seeds compared with nced259 and wild type strongly suggested that specific expression of NCED6 in the endosperm is mainly responsible for ABA production. In accordance, transcriptome analyses revealed broad similarities in gene expression between nced2569 and either wild-type or nced259 developing seeds. Gene ontology enrichments revealed a large spectrum of ABA activation targets involved in reserve storage and desiccation tolerance, and repression of photosynthesis and cell cycle. Proteome and metabolome profiles in dry nced2569 seeds, compared with wild-type and cyp707a1a2 seeds, also highlighted an inhibitory role of ABA on remobilization of reserves, reactive oxygen species production, and protein oxidation. Down-regulation of these oxidative processes by ABA may have an essential role in dormancy control.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Genómica , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas/genética , Ciclo Celular , Desecación , Regulación de la Expresión Génica de las Plantas , Metaboloma , Mutación/genética , Oxidación-Reducción , Fotosíntesis , Latencia en las Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/genética , Transducción de Señal/genética , Transcriptoma/genética
5.
New Phytol ; 223(3): 1461-1477, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31077612

RESUMEN

Autophagy is a universal mechanism in eukaryotic cells that facilitates the degradation of unwanted cell constituents and is essential for cell homeostasis and nutrient recycling. The salicylic acid-independent effects of autophagy defects on leaf metabolism were determined through large-scale proteomic and lipidomic analyses of atg5 and atg5/sid2 mutants under different nitrogen and sulfur growth conditions. Results revealed that irrespective of the growth conditions, plants carrying the atg5 mutation presented all the characteristics of endoplasmic reticulum (ER) stress. Increases in peroxisome and ER proteins involved in very long chain fatty acid synthesis and ß-oxidation indicated strong modifications of lipid metabolism. Lipidomic analyses revealed changes in the concentrations of sphingolipids, phospholipids and galactolipids. Significant accumulations of phospholipids and ceramides and changes in GIPCs (glycosyl-inositol-phosphoryl-ceramides) in atg5 mutants indicated large modifications in endomembrane-lipid and especially plasma membrane-lipid composition. Decreases in chloroplast proteins and galactolipids in atg5 under low nutrient conditions, indicated that chloroplasts were used as lipid reservoirs for ß-oxidation in atg5 mutants. In conclusion, this report demonstrates the strong impact of autophagy defect on ER stress and reveals the role of autophagy in the control of plant lipid metabolism and catabolism, influencing both lipid homeostasis and endomembrane composition.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Autofagia , Retículo Endoplásmico/metabolismo , Lipidómica , Mutación/genética , Peroxisomas/metabolismo , Proteómica , Proteínas de Arabidopsis/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Estrés del Retículo Endoplásmico , Mitocondrias/metabolismo , Modelos Biológicos , Ácido Salicílico/metabolismo
6.
Plant Cell Environ ; 42(4): 1318-1327, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30652319

RESUMEN

Barley is used for food and feed, and brewing. Nondormant seeds are required for malting, but the lack of dormancy can lead to preharvest sprouting (PHS), which is also undesired. Here, we report several new loci that modulate barley seed dormancy and PHS. Using genome-wide association mapping of 184 spring barley genotypes, we identified four new, highly significant associations on chromosomes 1H, 3H, and 5H previously not associated with barley seed dormancy or PHS. A total of 71 responsible genes were found mostly related to flowering time and hormone signalling. A homolog of the well-known Arabidopsis Delay of Germination 1 (DOG1) gene was annotated on the barley chromosome 3H. Unexpectedly, DOG1 appears to play only a minor role in barley seed dormancy. However, the gibberellin oxidase gene HvGA20ox1 contributed to dormancy alleviation, and another seven important loci changed significantly during after-ripening. Furthermore, nitric oxide release correlated negatively with dormancy and shared 27 associations. Origin and growth environment affected seed dormancy and PHS more than did agronomic traits. Days to anthesis and maturity were shorter when seeds were produced under drier conditions, seeds were less dormant, and PHS increased, with a heritability of 0.57-0.80. The results are expected to be useful for crop improvement.


Asunto(s)
Germinación/genética , Hordeum/genética , Óxido Nítrico/fisiología , Latencia en las Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Genes de Plantas/genética , Genes de Plantas/fisiología , Estudio de Asociación del Genoma Completo , Germinación/fisiología , Hordeum/metabolismo , Hordeum/fisiología , Latencia en las Plantas/fisiología
7.
Int J Mol Sci ; 20(2)2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30654520

RESUMEN

The retromer is a multiprotein complex conserved from yeast to humans, which is involved in intracellular protein trafficking and protein recycling. Selection of cargo proteins transported by the retromer depends on the core retromer subunit composed of the three vacuolar protein sorting (VPS) proteins, namely VPS26, VPS29, and VPS35. To gain a better knowledge of the importance of the plant retromer in protein sorting, we carried out a comparative proteomic and metabolomic analysis of Arabidopsis thaliana seeds from the wild-type and the null-retromer mutant vps29. Here, we report that the retromer mutant displays major alterations in the maturation of seed storage proteins and synthesis of lipid reserves, which are accompanied by severely impaired seed vigor and longevity. We also show that the lack of retromer components is counterbalanced by an increase in proteins involved in intracellular trafficking, notably members of the Ras-related proteins in brain (RAB) family proteins. Our study suggests that loss of the retromer stimulates energy metabolism, affects many metabolic pathways, including that of cell wall biogenesis, and triggers an osmotic stress response, underlining the importance of retromer function in seed biology.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Pleiotropía Genética , Metabolómica/métodos , Mutación/genética , Proteómica/métodos , Semillas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo Energético , Ontología de Genes , Germinación , Metaboloma
8.
J Exp Bot ; 69(6): 1369-1385, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29281085

RESUMEN

Autophagy is essential for protein degradation, nutrient recycling, and nitrogen remobilization. Autophagy is induced during leaf ageing and in response to nitrogen starvation, and is known to play a fundamental role in nutrient recycling for remobilization and seed filling. Accordingly, ageing leaves of Arabidopsis autophagy mutants (atg) have been shown to over-accumulate proteins and peptides, possibly because of a reduced protein degradation capacity. Surprisingly, atg leaves also displayed higher protease activities. The work reported here aimed at identifying the nature of the proteases and protease activities that accumulated differentially (higher or lower) in the atg mutants. Protease identification was performed using shotgun LC-MS/MS proteome analyses and activity-based protein profiling (ABPP). The results showed that the chloroplast FTSH (FILAMENTATION TEMPERATURE SENSITIVE H) and DEG (DEGRADATION OF PERIPLASMIC PROTEINS) proteases and several extracellular serine proteases [subtilases (SBTs) and serine carboxypeptidase-like (SCPL) proteases] were less abundant in atg5 mutants. By contrast, proteasome-related proteins and cytosolic or vacuole cysteine proteases were more abundant in atg5 mutants. Rubisco degradation assays and ABPP showed that the activities of proteasome and papain-like cysteine protease were increased in atg5 mutants. Whether these proteases play a back-up role in nutrient recycling and remobilization in atg mutants or act to promote cell death is discussed in relation to their accumulation patterns in the atg5 mutant compared with the salicylic acid-depleted atg5/sid2 double-mutant, and in low nitrate compared with high nitrate conditions. Several of the proteins identified are indeed known as senescence- and stress-related proteases or as spontaneous cell-death triggering factors.


Asunto(s)
Arabidopsis/fisiología , Autofagia/genética , Proteasas de Cisteína/genética , Arabidopsis/genética , Proteasas de Cisteína/metabolismo , Mutación , Papaína/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
9.
Plant J ; 85(4): 451-65, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26729600

RESUMEN

The seed expressed gene DELAY OF GERMINATION (DOG) 1 is absolutely required for the induction of dormancy. Next to a non-dormant phenotype, the dog1-1 mutant is also characterized by a reduced seed longevity suggesting that DOG1 may affect additional seed processes as well. This aspect however, has been hardly studied and is poorly understood. To uncover additional roles of DOG1 in seeds we performed a detailed analysis of the dog1 mutant using both transcriptomics and metabolomics to investigate the molecular consequences of a dysfunctional DOG1 gene. Further, we used a genetic approach taking advantage of the weak aba insensitive (abi) 3-1 allele as a sensitized genetic background in a cross with dog1-1. DOG1 affects the expression of hundreds of genes including LATE EMBRYOGENESIS ABUNDANT and HEAT SHOCK PROTEIN genes which are affected by DOG1 partly via control of ABI5 expression. Furthermore, the content of a subset of primary metabolites, which normally accumulate during seed maturation, was found to be affected in the dog1-1 mutant. Surprisingly, the abi3-1 dog1-1 double mutant produced green seeds which are highly ABA insensitive, phenocopying severe abi3 mutants, indicating that dog1-1 acts as an enhancer of the weak abi3-1 allele and thus revealing a genetic interaction between both genes. Analysis of the dog1 and dog1 abi3 mutants revealed additional seed phenotypes and therefore we hypothesize that DOG1 function is not limited to dormancy but that it is required for multiple aspects of seed maturation, in part by interfering with ABA signalling components.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Epistasis Genética , Perfilación de la Expresión Génica , Germinación , Modelos Biológicos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Latencia en las Plantas , Plantas Modificadas Genéticamente , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Transcriptoma
10.
Plant Physiol ; 170(3): 1367-80, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26826221

RESUMEN

Cell wall remodeling is an essential mechanism for the regulation of plant growth and architecture, and xyloglucans (XyGs), the major hemicellulose, are often considered as spacers of cellulose microfibrils during growth. In the seed, the activity of cell wall enzymes plays a critical role in germination by enabling embryo cell expansion leading to radicle protrusion, as well as endosperm weakening prior to its rupture. A screen for Arabidopsis (Arabidopsis thaliana) mutants affected in the hormonal control of germination identified a mutant, xyl1, able to germinate on paclobutrazol, an inhibitor of gibberellin biosynthesis. This mutant also exhibited reduced dormancy and increased resistance to high temperature. The XYL1 locus encodes an α-xylosidase required for XyG maturation through the trimming of Xyl. The xyl1 mutant phenotypes were associated with modifications to endosperm cell wall composition that likely impact on its resistance, as further demonstrated by the restoration of normal germination characteristics by endosperm-specific XYL1 expression. The absence of phenotypes in mutants defective for other glycosidases, which trim Gal or Fuc, suggests that XYL1 plays the major role in this process. Finally, the decreased XyG abundance in hypocotyl longitudinal cell walls of germinating embryos indicates a potential role in cell wall loosening and anisotropic growth together with pectin de-methylesterification.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Glucanos/metabolismo , Xilanos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Endospermo/crecimiento & desarrollo , Endospermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Germinación/efectos de los fármacos , Germinación/genética , Germinación/fisiología , Mutación , Plantas Modificadas Genéticamente , Procesamiento Proteico-Postraduccional , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Triazoles/farmacología , Xilosidasas/genética , Xilosidasas/metabolismo
11.
Plant Cell Physiol ; 57(4): 660-74, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26637538

RESUMEN

Mature seeds are an ultimate physiological status that enables plants to endure extreme conditions such as high and low temperature, freezing and desiccation. Seed longevity, the period over which seed remains viable, is an important trait not only for plant adaptation to changing environments, but also, for example, for agriculture and conservation of biodiversity. Reduction of seed longevity is often associated with oxidation of cellular macromolecules such as nucleic acids, proteins and lipids. Seeds possess two main strategies to combat these stressful conditions: protection and repair. The protective mechanism includes the formation of glassy cytoplasm to reduce cellular metabolic activities and the production of antioxidants that prevent accumulation of oxidized macromolecules during seed storage. The repair system removes damage accumulated in DNA, RNA and proteins upon seed imbibition through enzymes such as DNA glycosylase and methionine sulfoxide reductase. In addition to longevity, dormancy is also an important adaptive trait that contributes to seed lifespan. Studies in Arabidopsis have shown that the seed-specific transcription factor ABSCISIC ACID-INSENSITIVE3 (ABI3) plays a central role in ABA-mediated seed dormancy and longevity. Seed longevity largely relies on the viability of embryos. Nevertheless, characterization of mutants with altered seed coat structure and constituents has demonstrated that although the maternally derived cell layers surrounding the embryos are dead, they have a significant impact on longevity.


Asunto(s)
Latencia en las Plantas/fisiología , Semillas/fisiología , Reparación del ADN , Estrés Oxidativo , Polifenoles/metabolismo , ARN de Planta/fisiología , Semillas/citología , Transducción de Señal , Ceras
12.
Mol Cell Proteomics ; 13(1): 252-68, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24198433

RESUMEN

During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [(35)S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment.


Asunto(s)
Germinación/genética , Biosíntesis de Proteínas , Proteómica , Semillas/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/biosíntesis , ARN Mensajero/genética
13.
J Exp Bot ; 66(20): 6399-413, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26184996

RESUMEN

Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana genotypes, that carry introgression fragments at the position of seed longevity quantitative trait loci and as a result display different levels of seed longevity, was investigated. Seeds at two physiological states, after-ripened seeds that had the full germination ability and aged (stored) seeds of which the germination ability was severely reduced, were compared. Aged dry seed proteomes were markedly different from the after-ripened and reflected the seed longevity level of the four genotypes, despite the fact that dry seeds are metabolically quiescent. Results confirmed the role of antioxidant systems, notably vitamin E, and indicated that protection and maintenance of the translation machinery and energy pathways are essential for seed longevity. Moreover, a new role for seed storage proteins (SSPs) was identified in dry seeds during ageing. Cruciferins (CRUs) are the most abundant SSPs in Arabidopsis and seeds of a triple mutant for three CRU isoforms (crua crub cruc) were more sensitive to artificial ageing and their seed proteins were highly oxidized compared with wild-type seeds. These results confirm that oxidation is involved in seed deterioration and that SSPs buffer the seed from oxidative stress, thus protecting important proteins required for seed germination and seedling formation.


Asunto(s)
Arabidopsis/fisiología , Germinación , Proteoma/genética , Proteínas de Almacenamiento de Semillas/genética , Semillas/fisiología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteoma/metabolismo , Proteínas de Almacenamiento de Semillas/metabolismo
14.
Plant Cell Physiol ; 55(9): 1646-59, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25008975

RESUMEN

Among secondary metabolites, flavonoids are particularly important for the plant life cycle and could be beneficial for human health. The study of Arabidopsis thaliana transparent testa mutants showed that seed flavonoids are important for environmental adaptation, reactive oxygen species homeostasis, dormancy and longevity. Compared with Arabidopsis and maize (Zea mays L.), far less research has been conducted on rice (Oryza sativa L.) particularly for cultivars with non-pigmented seeds. In this study, we describe the localization, nature and relative abundance of flavonoids in mature and germinated non-pigmented Nipponbare seeds using a combination of confocal microscopy, mass spectrometry and gene expression analysis. The mature seed exclusively accumulates flavones mostly in the embryo and to a lesser extent in the pericarp/testa. Due to the variety of flavone conjugation patterns, 21 different flavones were identified, including sulfated flavones never mentioned before in cereals. Schaftoside (apigenin-6-C-glucoside-8-C-arabinoside) and its two isomers represent nearly 50% of all rice seed flavones and are the only flavonoids accumulated in the pericarp/testa seed compartment. These 21 conjugated flavones showed a very stable profile during rice seed germination sensu stricto, while expression of key flavone synthesis genes strongly increases before the completion of germination. We discuss the potential roles of these rice seed flavones in a seed biology context.


Asunto(s)
Flavonas/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Semillas/metabolismo , Cromatografía Liquida , Flavonas/química , Flavonas/aislamiento & purificación , Germinación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/química , Oryza/genética , Oryza/ultraestructura , ARN de Planta/genética , Semillas/química , Semillas/genética , Semillas/ultraestructura , Espectrometría de Masas en Tándem , Agua/fisiología
15.
Food Chem ; 439: 138027, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029561

RESUMEN

During germination sensu-stricto in pulses, an increase in the content of thiamine (B1) and folate (B9) vitamins is expected, along with a reduction in α-galactoside levels. The aim of our study was to optimize germination to increase the nutritional quality of lentils and cowpeas. An experimental design was carried out at 12 h and 24 h of imbibition to analyze the effects of temperature, light, and water content on thiamine, folate, and α-galactoside content. Germination increased thiamine content by 152% in lentils, while in cowpeas, the increase was only 10%. Folate content in cowpea increased by 33%, while α-galactoside content decreased by 99% in cowpeas and by 48% in lentils. Germination sensu-stricto can be safely implemented by any food company worldwide as it is simple and involves less sanitary risk than sprouting. This opens up opportunities for enhancing food nutrient content and new ways of processing pulses.


Asunto(s)
Lens (Planta) , Vigna , Ácido Fólico , Tiamina , Semillas , Galactósidos , Germinación
16.
Proteomics ; 13(3-4): 568-78, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23034931

RESUMEN

ROS and reactive nitrogen species (RNS) are key regulators of redox homeostasis in living organisms including plants. As control of redox homeostasis plays a central function in plant biology, redox proteomics could help in characterizing the potential roles played by ROS/RNS-induced posttranslational modification in plant cells. In this review, we focus on two posttranslational modifications: protein carbonylation (a marker of protein oxidation) and protein S-nitrosylation, both of which having recently emerged as important regulatory mechanisms during numerous fundamental biological processes. Here, we describe the recent progress in proteomic analysis of carbonylated and nitrosylated proteins and highlight the achievements made in understanding the physiological basis of these oxy/nitro modifications in plants. In addition, we document the existence of a relationship between ROS-based carbonylation and RNS-based nitrosylation thus supporting the finding that crosstalk between cellular signaling stress pathways induced by ROS and RNS could be mediated by specific protein modifications.


Asunto(s)
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Carbonilación Proteica , Transducción de Señal , Animales , Humanos , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , S-Nitrosotioles/metabolismo
17.
C R Biol ; 345(4): 61-110, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36847120

RESUMEN

Elucidating the mechanisms that control seed development, metabolism, and physiology is a fundamental issue in biology. Michel Caboche had long been a catalyst for seed biology research in France up until his untimely passing away last year. To honour his memory, we have updated a review written under his coordination in 2010 entitled "Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research". This review encompassed different molecular aspects of seed development, reserve accumulation, dormancy and germination, that are studied in the lab created by M. Caboche. We have extended the scope of this review to highlight original experimental approaches implemented in the field over the past decade such as omics approaches aimed at investigating the control of gene expression, protein modifications, primary and specialized metabolites at the tissue or even cellular level, as well as seed biodiversity and the impact of the environment on seed quality.


L'élucidation des mécanismes qui contrôlent le développement, le métabolisme et la physiologie des graines est une question fondamentale en biologie. Michel Caboche a longtemps été un catalyseur de la recherche en biologie des graines en France jusqu'à son décès prématuré l'année dernière. Pour honorer sa mémoire, nous avons mis à jour une revue écrite sous sa coordination en 2010 intitulée « Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research ¼. Cette revue englobait différents aspects moléculaires du développement des graines, de l'accumulation des réserves, de la dormance et de la germination, qui sont étudiés dans le laboratoire créé par M. Caboche. Nous avons étendu la portée de cette revue pour mettre en évidence des approches expérimentales originales mises en œuvre dans le domaine au cours de la dernière décennie, telles que les approches omiques visant à étudier le contrôle de l'expression des gènes, les modifications des protéines, les métabolites primaires et spécialisés au niveau des tissus ou même des cellules, tout en tenant compte de la biodiversité des graines et de l'impact de l'environnement sur leur qualité.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Semillas/genética , Biología Molecular , Biología , Francia , Germinación/genética , Latencia en las Plantas/genética , Regulación de la Expresión Génica de las Plantas
18.
J Proteome Res ; 11(11): 5418-32, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22985405

RESUMEN

Despite having very similar initial pools of stored mRNAs and proteins in the dry state, mature Arabidopsis seeds can either proceed toward radicle protrusion or stay in a dormant state upon imbibition. Dormancy breaking, a prerequisite to germination completion, can be induced by different treatments though the underlying mechanisms remain elusive. Thus, we investigated the consequence of such treatments on the seed proteome. Two unrelated dormancy-releasing treatments were applied to dormant seeds, namely, cold stratification and exogenous nitrates, in combination with differential proteomic tools to highlight the specificities of the imbibed dormant state. The results reveal that both treatments lead to highly similar proteome adjustments. In the imbibed dormant state, enzymes involved in reserve mobilization are less accumulated and it appears that several energetically costly processes associated to seed germination and preparation for subsequent seedling establishment are repressed. Our data suggest that dormancy maintenance is associated to an abscisic-acid-dependent recapitulation of the late maturation program resulting in a higher potential to cope with environmental stresses. The comparison of the present results with previously published -omic data sets reinforces and extends the assumption that post-transcriptional, translational, and post-translational regulations are determinant for seed germination.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Frío , Nitratos/metabolismo , Proteoma , Semillas/metabolismo , Arabidopsis/metabolismo , Electroforesis en Gel Bidimensional , Germinación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Transcriptoma
19.
Front Plant Sci ; 13: 867263, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755645

RESUMEN

Seed germination and subsequent seedling growth affect the final yield and quality of the crop. Seed germination is defined as a series of processes that begins with water uptake by a quiescent dry seed and ends with the elongation of embryonic axis. Rice is an important cereal crop species, and during seed germination, two tissues function in a different manner; the embryo grows into a seedling as the next generation and the endosperm is responsible for nutritional supply. Toward understanding the integrated roles of each tissue at the transcriptional, translational, and metabolic production levels during germination, an exhaustive "multi-omics" analysis was performed by combining transcriptomics, label-free shotgun proteomics, and metabolomics on rice germinating embryo and endosperm, independently. Time-course analyses of the transcriptome and metabolome in germinating seeds revealed a major turning point in the early phase of germination in both embryo and endosperm, suggesting that dramatic changes begin immediately after water imbibition in the rice germination program at least at the mRNA and metabolite levels. In endosperm, protein profiles mostly showed abundant decreases corresponding to 90% of the differentially accumulated proteins. An ontological classification revealed the shift from the maturation to the germination process where over-represented classes belonged to embryonic development and cellular amino acid biosynthetic processes. In the embryo, 19% of the detected proteins are differentially accumulated during germination. Stress response, carbohydrate, fatty acid metabolism, and transport are the main functional classes representing embryo proteome change. Moreover, proteins specific to the germinated state were detected by both transcriptomic and proteomic approaches and a major change in the network operating during rice germination was uncovered. In particular, concomitant changes of hormonal metabolism-related proteins (GID1L2 and CNX1) implicated in GAs and ABA metabolism, signaling proteins, and protein turnover events emphasized the importance of such biological networks in rice seeds. Using metabolomics, we highlighted the importance of an energetic supply in rice seeds during germination. In both embryo and endosperm, starch degradation, glycolysis, and subsequent pathways related to these cascades, such as the aspartate-family pathway, are activated during germination. A relevant number of accumulated proteins and metabolites, especially in embryos, testifies the pivotal role of energetic supply in the preparation of plant growth. This article summarizes the key genetic pathways in embryo and endosperm during rice seed germination at the transcriptional, translational, and metabolite levels and thereby, emphasizes the value of combined multi-omics approaches to uncover the specific feature of tissues during germination.

20.
Front Plant Sci ; 13: 1017890, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531385

RESUMEN

Wheat is one of the most important crops in the world. Its production can be influenced by a diversity of beneficial and pathogenic rhizospheric microbes, including fungi. Amongst them, beneficial Trichoderma spp. can be used as alternatives to chemical fertilizers, as they are cheap and harmless to the environment. Our study aimed to isolate, identify, and characterize Trichoderma spp. from Lebanon associated with wheat. Two Trichoderma strains belonging to T. afroharzianum, and T. guizhouense species, were isolated and found to be endophytes, enhancing root growth and producing Indole-3-acetic acid. Inoculation also improved seedling development, and increased plant growth and yield. Furthermore, the two strains inhibit Fusarium growth in vitro. These Trichoderma spp. have thus the capacity to be used as organic fertilizers for wheat.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA