Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 235: 113768, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325142

RESUMEN

Cancer is still one of the deadliest diseases, and diagnosing and treating it effectively remains difficult. As a result, advancements in earlier detection and better therapies are urgently needed. Conventional chemotherapy induces chemoresistance, has non-specific toxicity, and has a meager efficacy. Natural materials like nanosized clay mineral formations of various shapes (platy, tubular, spherical, and fibrous) with tunable physicochemical, morphological, and structural features serve as potential templates for these. As multifunctional biocompatible nanocarriers with numerous applications in cancer research, diagnosis, and therapy, their submicron size, individual morphology, high specific surface area, enhanced adsorption ability, cation exchange capacity, and multilayered organization of 0.7-1 nm thick single sheets have attracted significant interest. Kaolinite, halloysite, montmorillonite, laponite, bentonite, sepiolite, palygorskite, and allophane are the most typical nanoclay minerals explored for cancer. These multilayered minerals can function as nanocarriers to effectively carry a variety of anticancer medications to the tumor site and improve their stability, dispersibility, sustained release, and transport. Proteins and DNA/RNA can be transported using nanoclays with positive and negative surfaces. The platform for phototherapeutic agents can be nanoclays. Clays with bio-functionality have been developed using various surface engineering techniques, which could help treat cancer. The promise of nanoclays as distinctive crystalline materials with applications in cancer research, diagnostics, and therapy are examined in this review.


Asunto(s)
Bentonita , Neoplasias , Humanos , Bentonita/química , Caolín , Arcilla , Minerales , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico
2.
Pathol Res Pract ; 257: 155275, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643552

RESUMEN

Activation of autophagy, a process of cellular stress response, leads to the breakdown of proteins, organelles, and other parts of the cell in lysosomes, and can be linked to several ailments, such as cancer, neurological diseases, and rare hereditary syndromes. Thus, its regulation is very carefully monitored. Transcriptional and post-translational mechanisms domestically or in whole organisms utilized to control the autophagic activity, have been heavily researched. In modern times, microRNAs (miRNAs) are being considered to have a part in post-translational orchestration of the autophagic activity, with miR-21 as one of the best studied miRNAs, it is often more than expressed in cancer cells. This regulatory RNA is thought to play a major role in a plethora of processes and illnesses including growth, cancer, cardiovascular disease, and inflammation. Different studies have suggested that a few autophagy-oriented genes, such as PTEN, Rab11a, Atg12, SIPA1L2, and ATG5, are all targeted by miR-21, indicating its essential role in the regulation.


Asunto(s)
Autofagia , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Autofagia/genética , Autofagia/fisiología , Animales , Transducción de Señal/genética , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo
3.
Pathol Res Pract ; 250: 154793, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37683388

RESUMEN

Cancer is a multifaceted and complex disorder characterized by uncontrolled rates of cell proliferation and its ability to spread and attack other organs. Emerging data indicated several pathways and molecular targets are engaged in cancer progression. Among them, the Wnt signaling pathway was shown to have a crucial role in cancer onset and progression. Dishevelled (DVL) acts in a branch point of canonical and non-canonical Wnt pathway. DVL not only acts in the cytoplasm to inactivate the destruction complex of ß-catenin but is also transported into the nucleus to affect the transcription of target genes. Available data revealed that the expression levels of DVL increased in cell and clinical specimens of various cancers, proposing that it may have an oncogenic role. DVL promoted cell invasion, migration, cell cycle, survival, proliferation, 3D-spheroid formation, stemness, and epithelial mesenchymal transition (EMT) and it suppressed cell apoptosis. The higher levels of DVL is associated with the clinicopathological characteristic of cancer-affected patients, including lymph node metastasis, tumor grade, histological type, and age. In addition, the higher levels of DVL could be a promising diagnostic and prognostic biomarker in cancer as well as it could be a mediator in cancer chemoresistance to Methotrexate, paclitaxel, and 5-fluorouracil. This study aimed to investigate the underlying molecular mechanism of DVL in cancer pathogenesis as well as to explore its importance in cancer diagnosis and prognosis as well as its role as a mediator in cancer chemotherapy.

4.
Pathol Res Pract ; 248: 154724, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37542861

RESUMEN

MicroRNAs, as a major type of noncoding RNAs, have crucial roles in various functions during development. Available data have shown that miR-542-3p decreased in various types of cancers. MiR-542-3p is engaged in various cancer-related behaviors like glycolysis, metastasis, epithelial-to-mesenchymal transition (EMT), cell cycle, apoptosis, and proliferation via targeting at least 18 genes and some important signaling pathways like Wnt/ß-catenin, Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and Janus kinase 2 (JAK2) signaling, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling. Current studies have proposed that the level of miR-542-3p could be modulated by several upstream regulators like transcription factors, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). In addition, the level of miR-542-3p or its related lncRNAs/circRNAs are correlated with poor prognosis and clinicopathological features of cancer-affected patients. Here, we have discussed the biogenesis, function, and regulation of miR-542-3p as well as its aberrant expression in various types of neoplastic cells. Moreover, we have discussed the prognostic value of miR-542-3p in cancer. Finally, we have added the underlying molecular mechanism of miR-542-3p in cancer pathogenesis.

5.
Fundam Clin Pharmacol ; 37(5): 900-909, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36960597

RESUMEN

Bladder cancer (BC) is known as a prevalent genitourinary malignancy and has a significant mortality rate worldwide. Despite recent therapeutic approaches, the recurrence rate is high, highlighting the need for a new strategy to reduce the BC cell progression. Quercetin, a flavonoid compound, demonstrated promising anticancer properties and could be used in the management of various malignancies such as BC. This comprehensive review summarized quercetin's cellular and molecular mechanisms underlying anticancer activities. The study's findings indicated that quercetin prevents the proliferation of the human BC cell line, promotes apoptosis of BIU-87 cells, reduces the expression of p-P70S6K, and induces apoptosis by p-AMPK. Moreover, quercetin restricts tumor growth through the AMPK/mTOR cascade and prevents colony formation of human BC cells by triggering DNA damage. Studying this review article will help researchers better understand quercetin's functional role in the prevention and treatment of BC.


Asunto(s)
Quercetina , Neoplasias de la Vejiga Urinaria , Humanos , Quercetina/farmacología , Quercetina/uso terapéutico , Proteínas Quinasas Activadas por AMP , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Estrés Oxidativo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA