RESUMEN
Molecular tools enabling the control and observation of the proximity of proteins are essential for studying the functional role of physical distance between two proteins. Here we present CATCHFIRE (chemically assisted tethering of chimera by fluorogenic-induced recognition), a chemically induced proximity technology with intrinsic fluorescence imaging and sensing capabilities. CATCHFIRE relies on genetic fusion to small dimerizing domains that interact upon addition of fluorogenic inducers of proximity that fluoresce upon formation of the ternary assembly, allowing real-time monitoring of the chemically induced proximity. CATCHFIRE is rapid and fully reversible and allows the control and tracking of protein localization, protein trafficking, organelle transport and cellular processes, opening new avenues for studying or controlling biological processes with high spatiotemporal resolution. Its fluorogenic nature allows the design of a new class of biosensors for the study of processes such as signal transduction and apoptosis.
RESUMEN
Protein-protein interactions (PPIs) can be detected through selective complementation of split fluorescent reporters made of two complementary fragments that reassemble into a functional fluorescent reporter when in close proximity. We previously introduced splitFAST, a chemogenetic PPI reporter with rapid and reversible complementation. Here, we present the engineering of splitFAST2, an improved reporter displaying higher brightness, lower self-complementation, and higher dynamic range for optimal monitoring of PPI using an original protein engineering strategy that exploits proteins with orthology relationships. Our study allowed the identification of a system with improved properties and enabled a better understanding of the molecular features controlling the complementation properties. Because of the rapidity and reversibility of its complementation, its low self-complementation, high dynamic range, and improved brightness, splitFAST2 is well suited to study PPI with high spatial and temporal resolution, opening great prospects to decipher the role of PPI in various biological contexts.