Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nature ; 560(7716): E4, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29930352

RESUMEN

In this Letter, owing to an error during the production process, the author affiliations were listed incorrectly. Affiliation number 5 (Colleges of Nanoscale Science and Engineering, State University of New York (SUNY)) was repeated, and affiliation numbers 6-8 were incorrect. In addition, the phrase "two oxide thickness variants" should have been "two gate oxide thickness variants". These errors have all been corrected online.

2.
Nature ; 556(7701): 349-354, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29670262

RESUMEN

Electronic and photonic technologies have transformed our lives-from computing and mobile devices, to information technology and the internet. Our future demands in these fields require innovation in each technology separately, but also depend on our ability to harness their complementary physics through integrated solutions1,2. This goal is hindered by the fact that most silicon nanotechnologies-which enable our processors, computer memory, communications chips and image sensors-rely on bulk silicon substrates, a cost-effective solution with an abundant supply chain, but with substantial limitations for the integration of photonic functions. Here we introduce photonics into bulk silicon complementary metal-oxide-semiconductor (CMOS) chips using a layer of polycrystalline silicon deposited on silicon oxide (glass) islands fabricated alongside transistors. We use this single deposited layer to realize optical waveguides and resonators, high-speed optical modulators and sensitive avalanche photodetectors. We integrated this photonic platform with a 65-nanometre-transistor bulk CMOS process technology inside a 300-millimetre-diameter-wafer microelectronics foundry. We then implemented integrated high-speed optical transceivers in this platform that operate at ten gigabits per second, composed of millions of transistors, and arrayed on a single optical bus for wavelength division multiplexing, to address the demand for high-bandwidth optical interconnects in data centres and high-performance computing3,4. By decoupling the formation of photonic devices from that of transistors, this integration approach can achieve many of the goals of multi-chip solutions 5 , but with the performance, complexity and scalability of 'systems on a chip'1,6-8. As transistors smaller than ten nanometres across become commercially available 9 , and as new nanotechnologies emerge10,11, this approach could provide a way to integrate photonics with state-of-the-art nanoelectronics.

3.
Opt Express ; 31(15): 24307-24319, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37475261

RESUMEN

Light detection and ranging (LIDAR) is a widely used technique for measuring distance. With recent advancements in integrated photonics, there is a growing interest in miniaturizing LIDAR systems through on-chip photonic devices, but a LIDAR light source compatible with current integrated circuit technology remains elusive. In this letter, we report a pulsed CMOS LED based on native Si, which spectrally overlaps with Si detectors' responsivity and can produce optical pulses as short as 1.6 ns. A LIDAR prototype is built by incorporating this LED and a Si single-photon avalanche diode (SPAD). By utilizing time-correlated single-photon counting (TCSPC) to measure the time-of-flight (ToF) of reflected optical pulses, our LIDAR successfully estimated the distance of targets located approximately 30 cm away with sub-centimeter resolution, approaching the Cramér-Rao lower bound set by the pulse width and instrument jitter. Additionally, our LIDAR is capable of generating depth images of natural targets. This all-Si LIDAR demonstrates the feasibility of integrated distance sensors on a single photonic chip.

4.
Opt Express ; 29(23): 38027-38043, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808863

RESUMEN

Raman microscopy with resolution below the diffraction limit is demonstrated on sub-surface nanostructures. Unlike most other modalities for nanoscale measurements, our approach is able to image nanostructures buried several microns below the sample surface while still extracting details about the chemistry, strain, and temperature of the nanostructures. In this work, we demonstrate that combining polarized Raman microscopy adjusted to optimize edge enhancement effects and nanostructure contrast with fast computational deconvolution methods can improve the spatial resolution while preserving the flexibility of Raman microscopy. The cosine transform method demonstrated here enables significant computational speed-up from O(N3) to O(Nlog N) - resulting in computation times that are significantly below the image acquisition time. CMOS poly-Si nanostructures buried below 0.3 - 6 µm of complex dielectrics are used to quantify the performance of the instrument and the algorithm. The relative errors of the feature sizes, the relative chemical concentrations and the fill factors of the deconvoluted images are all approximately 10% compared with the ground truth. For the smallest poly-Si feature of 230 nm, the absolute error is approximately 25 nm.

5.
Opt Express ; 29(16): 24723-24734, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614822

RESUMEN

'Molecular fingerprinting' with Raman spectroscopy can address important problems-from ensuring our food safety, detecting dangerous substances, to supporting disease diagnosis and management. However, the broad adoption of Raman spectroscopy demands low-cost, portable instruments that are sensitive and use lasers that are safe for human eye and skin. This is currently not possible with existing Raman spectroscopy approaches. Portability has been achieved with dispersive Raman spectrometers, however, fundamental entropic limits to light collection both limits sensitivity and demands high-power lasers and cooled expensive detectors. Here, we demonstrate a swept-source Raman spectrometer that improves light collection efficiency by up to 1000× compared to portable dispersive spectrometers. We demonstrate high detection sensitivity with only 1.5 mW average excitation power and an uncooled amplified silicon photodiode. The low optical power requirement allowed us to utilize miniature chip-scale MEMS-tunable lasers with close to eye-safe optical powers for excitation. We characterize the dynamic range and spectral characteristics of this Raman spectrometer in detail, and use it for fingerprinting of different molecular species consumed everyday including analgesic tablets, nutrients in vegetables, and contaminated alcohol. By moving the complexity of Raman spectroscopy from bulky spectrometers to chip-scale light sources, and by replacing expensive cooled detectors with low-cost uncooled alternatives, this swept-source Raman spectroscopy technique could make molecular fingerprinting more accessible.


Asunto(s)
Lentes , Dispositivos Ópticos , Espectrometría Raman/instrumentación , Acetaminofén/análisis , Bebidas Alcohólicas/análisis , Difenhidramina/análisis , Diseño de Equipo , Humanos , Ibuprofeno/análisis , Ibuprofeno/química , Rayos Láser , Metanol/análisis , Nutrientes/análisis , Espectrometría Raman/métodos , Tolueno/análisis , Verduras/química
6.
Nature ; 528(7583): 534-8, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26701054

RESUMEN

Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems--from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a 'zero-change' approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

7.
Opt Express ; 28(26): 39606-39617, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33379506

RESUMEN

In present literature on integrated modulation and filtering, limitations in the extinction ratio are dominantly attributed to a combination of imbalance in interfering wave amplitude, instability of control signals, stray light (e.g., in the cladding), or amplified spontaneous emission from optical amplifiers. Here we show that the existence of optical frequency noise in single longitudinal mode lasers presents an additional limit to the extinction ratio of optical modulators. A simple frequency-domain model is used to describe a linear optical system's response in the presence of frequency noise, and an intuitive picture is given for systems with arbitrary sampling time. Understanding the influence of frequency noise will help guide the design choices of device and system engineers and offer a path toward even higher-extinction optical modulators.

8.
Opt Express ; 27(17): 24274-24285, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31510319

RESUMEN

Silicon photonic wavelength division multiplexing (WDM) transceivers promise to achieve multi-Tbps data rates for next-generation short-reach optical interconnects. In these systems, microring resonators are important because of their low power consumption and small footprint, two critical factors for large-scale WDM systems. However, their resonant nature and silicon's strong optical nonlinearity give rise to nonlinear effects that can deteriorate the system's performance with optical powers on the order of milliwatts, which can be reached on the transmitter side where a laser is directly coupled into resonant modulators. Here, a theoretical time-domain nonlinear model for the dynamics of optical power in silicon resonant modulators is derived, accounting for two-photon absorption, free-carrier absorption and thermal and dispersion effects. This model is used to study the effects of high input optical powers over modulation quality, and experimental data in good agreement with the model is presented. Two major consequences are identified: the importance of a correct initialization of the resonance wavelength with respect to the laser due to the system's bistability; and the existence of an optimal input optical power beyond which the modulation quality degrades.

9.
Opt Lett ; 44(17): 4187-4190, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31465359

RESUMEN

Precise knowledge of a laser's wavelength is crucial for applications from spectroscopy to telecommunications. Here, we present a wavemeter that operates on the Talbot effect. Tone parameter extraction algorithms are used to retrieve the frequency of the periodic signal obtained in the sampled Talbot interferogram. Theoretical performance analysis based on the Cramér-Rao lower bound as well as experimental results are presented and discussed. With this scheme, we experimentally demonstrate a compact and high-precision wavemeter with below 10 pm single-shot estimation uncertainty under the 3-σ criterion around 780 nm.

10.
Opt Express ; 26(10): 13106-13121, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29801342

RESUMEN

Integrating photonics with advanced electronics leverages transistor performance, process fidelity and package integration, to enable a new class of systems-on-a-chip for a variety of applications ranging from computing and communications to sensing and imaging. Monolithic silicon photonics is a promising solution to meet the energy efficiency, sensitivity, and cost requirements of these applications. In this review paper, we take a comprehensive view of the performance of the silicon-photonic technologies developed to date for photonic interconnect applications. We also present the latest performance and results of our "zero-change" silicon photonics platforms in 45 nm and 32 nm SOI CMOS. The results indicate that the 45 nm and 32 nm processes provide a "sweet-spot" for adding photonic capability and enhancing integrated system applications beyond the Moore-scaling, while being able to offload major communication tasks from more deeply-scaled compute and memory chips without complicated 3D integration approaches.

11.
Opt Lett ; 41(11): 2434-7, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27244382

RESUMEN

Miniaturization of optical spectrometers has a significant practical value as it can enable compact, affordable spectroscopic systems for chemical and biological sensing applications. For many applications, the spectrometer must gather light from sources that span a wide range of emission angles and wavelengths. Here, we report a lens-free spectrometer that is simultaneously compact (<0.6 cm3), of high resolution (<1 nm), and has a clear aperture (of 10×10 mm). The wavelength-scale pattern in the dispersive element strongly diffracts the input light to produce non-paraxial mid-field diffraction patterns that are then recorded using an optimally matched image sensor and processed to reconstruct the spectrum.

12.
Opt Express ; 23(25): 32643-53, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26699053

RESUMEN

We report a defect state based guided-wave photoconductive detector at 1360-1630 nm telecommunication wavelength directly in standard microelectronics CMOS processes, with zero in-foundry process modification. The defect states in the polysilicon used to define a transistor gate assists light absorption. The body crystalline silicon helps form an inverse ridge waveguide to confine optical mode. The measured responsivity and dark current at 25 V forward bias are 0.34 A/W and 1.4 µA, respectively. The 3 dB bandwidth of the device is 1 GHz.

13.
Opt Express ; 22 Suppl 7: A1650-8, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25607478

RESUMEN

An optical communication channel is constructed using a heated thermo-electrically pumped, high efficiency infrared light-emitting diode (LED). In these devices, electro-luminescent cooling is observed, resulting in greater than unity (> 100%) efficiency in converting electrical power to optical power. The average amount of electrical energy required to generate a photon (4.3 meV) is much less than the optical energy in that photon (520 meV). Such a light source can serve as a test-bed for fundamental studies of energy-efficient bosonic communication channels. In this low energy consumption mode, we demonstrate data transmission at 3 kilobits per second (kbps) with only 120 picowatts of input electric power. Although the channel employs a mid-infrared source with limited quantum efficiency, a binary digit can be communicated using 40 femtojoules with a bit error rate of 3 x 10-3.


Asunto(s)
Calor , Luminiscencia , Óptica y Fotónica/instrumentación , Fotones , Diseño de Equipo , Humanos
14.
Opt Lett ; 39(4): 1061-4, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24562278

RESUMEN

We present measurements on resonant photodetectors utilizing sub-bandgap absorption in polycrystalline silicon ring resonators, in which light is localized in the intrinsic region of a p+/p/i/n/n+ diode. The devices, operating both at λ=1280 and λ=1550 nm and fabricated in a complementary metal-oxide-semiconductor (CMOS) dynamic random-access memory emulation process, exhibit detection quantum efficiencies around 20% and few-gigahertz response bandwidths. We observe this performance at low reverse biases in the range of a few volts and in devices with dark currents below 50 pA at 10 V. These results demonstrate that such photodetector behavior, previously reported by Preston et al. [Opt. Lett. 36, 52 (2011)], is achievable in bulk CMOS processes, with significant improvements with respect to the previous work in quantum efficiency, dark current, linearity, bandwidth, and operating bias due to additional midlevel doping implants and different material deposition. The present work thus offers a robust realization of a fully CMOS-fabricated all-silicon photodetector functional across a wide wavelength range.

15.
Adv Mater ; : e2401192, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848578

RESUMEN

Decarbonizing food production and mitigating agriculture's environmental impact require new technologies for precise delivery of fertilizers and pesticides to plants. The cuticle, a waxy barrier that protects the surface of leaves, causes 60%-90% runoff of fertilizers and pesticides, leading to the wastage of intensive resources, soil depletion, and water bodies pollution. Solutions to mitigate runoff include adding chemicals (e.g., surfactants) to decrease surface tension and enhance cuticles' permeability but have low efficacy. In this study, vapor-induced synergistic differentiation (VISDi) is used to nanomanufacture echinate pollen-like, high payload content (≈50 wt%) microcapsules decorated with robust spines that mechanically disrupt the cuticle and adhere to the leaf. VISDi induces a core-shell structure in the spines, enabling the release of agrochemicals from the microparticles' body into the leaf. As proof of concept, precise and highthroughput delivery of iron fertilizer in Fe-deficient spinach plants is demonstrated. Spray of spiny microparticles improves leaf adhesion by mechanical interlocking, reduces wash-off by an ≈12.5 fold, and enhances chlorophyll content by ≈7.3 times compared to the application of spherical counterparts. Together, these results show that spiny microparticles can mitigate agricultural runoff and provide a high-throughput tool for precise plant drug delivery.

16.
Sci Rep ; 14(1): 12692, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830877

RESUMEN

Here, we explore the application of Raman spectroscopy for the assessment of plant biodiversity. Raman spectra from 11 vascular plant species commonly found in forest ecosystems, specifically angiosperms (both monocots and eudicots) and pteridophytes (ferns), were acquired in vivo and in situ using a Raman leaf-clip. We achieved an overall accuracy of 91% for correct classification of a species within a plant group and identified lignin Raman spectral features as a useful discriminator for classification. The results demonstrate the potential of Raman spectroscopy in contributing to plant biodiversity assessment.


Asunto(s)
Biodiversidad , Espectrometría Raman , Espectrometría Raman/métodos , Plantas/química , Plantas/clasificación , Hojas de la Planta/química , Lignina/análisis
17.
Nat Biomed Eng ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834752

RESUMEN

The manufacturing of autologous chimaeric antigen receptor (CAR) T cells largely relies either on fed-batch and manual processes that often lack environmental monitoring and control or on bioreactors that cannot be easily scaled out to meet patient demands. Here we show that human primary T cells can be activated, transduced and expanded to high densities in a 2 ml automated closed-system microfluidic bioreactor to produce viable anti-CD19 CAR T cells (specifically, more than 60 million CAR T cells from donor cells derived from patients with lymphoma and more than 200 million CAR T cells from healthy donors). The in vitro secretion of cytokines, the short-term cytotoxic activity and the long-term persistence and proliferation of the cell products, as well as their in vivo anti-leukaemic activity, were comparable to those of T cells produced in a gas-permeable well. The manufacturing-process intensification enabled by the miniaturized perfusable bioreactor may facilitate the analysis of the growth and metabolic states of CAR T cells during ex vivo culture, the high-throughput optimization of cell-manufacturing processes and the scale out of cell-therapy manufacturing.

18.
Opt Lett ; 38(15): 2657-9, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23903103

RESUMEN

We demonstrate the first (to the best of our knowledge) depletion-mode carrier-plasma optical modulator fabricated in a standard advanced complementary metal-oxide-semiconductor (CMOS) logic process (45 nm node SOI CMOS) with no process modifications. The zero-change CMOS photonics approach enables this device to be monolithically integrated into state-of-the-art microprocessors and advanced electronics. Because these processes support lateral p-n junctions but not efficient ridge waveguides, we accommodate these constraints with a new type of resonant modulator. It is based on a hybrid microring/disk cavity formed entirely in the sub-90 nm thick monocrystalline silicon transistor body layer. Electrical contact of both polarities is made along the inner radius of the multimode ring cavity via an array of silicon spokes. The spokes connect to p and n regions formed using transistor well implants, which form radially extending lateral junctions that provide index modulation. We show 5 Gbps data modulation at 1265 nm wavelength with 5.2 dB extinction ratio and an estimated 40 fJ/bit energy consumption. Broad thermal tuning is demonstrated across 3.2 THz (18 nm) with an efficiency of 291 GHz/mW. A single postprocessing step to remove the silicon handle wafer was necessary to support low-loss optical confinement in the device layer. This modulator is an important step toward monolithically integrated CMOS photonic interconnects.

19.
Opt Lett ; 38(15): 2729-31, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23903125

RESUMEN

We demonstrate depletion-mode carrier-plasma optical modulators fabricated in a bulk complementary metal-oxide semiconductor (CMOS), DRAM-emulation process. To the best of our knowledge, these are the first depletion-mode modulators demonstrated in polycrystalline silicon and in bulk CMOS. The modulators are based on novel optical microcavities that utilize periodic spatial interference of two guided modes to create field nulls along waveguide sidewalls. At these nulls, electrical contacts can be placed while preserving a high optical Q. These cavities enable active devices in a process with no partial silicon etch and with lateral p-n junctions. We demonstrate two device variants at 5 Gbps data modulation rate near 1610 nm wavelength. One design shows 3.1 dB modulation depth with 1.5 dB insertion loss and an estimated 160 fJ/bit energy consumption, while a more compact device achieves 4.2 dB modulation depth with 4.0 dB insertion loss and 60 fJ/bit energy consumption. These modulators represent a significant breakthrough in enabling active photonics in bulk silicon CMOS--the platform of the majority of microelectronic logic and DRAM processes--and lay the groundwork for monolithically integrated CMOS-to-DRAM photonic links.

20.
Nat Commun ; 14(1): 882, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797286

RESUMEN

A nanoscale on-chip light source with high intensity is desired for various applications in integrated photonics systems. However, it is challenging to realize such an emitter using materials and fabrication processes compatible with the standard integrated circuit technology. In this letter, we report an electrically driven Si light-emitting diode with sub-wavelength emission area fabricated in an open-foundry microelectronics complementary metal-oxide-semiconductor platform. The light-emitting diode emission spectrum is centered around 1100 nm and the emission area is smaller than 0.14 µm2 (~[Formula: see text] nm). This light-emitting diode has high spatial intensity of >50 mW/cm2 which is comparable with state-of-the-art Si-based emitters with much larger emission areas. Due to sub-wavelength confinement, the emission exhibits a high degree of spatial coherence, which is demonstrated by incorporating the light-emitting diode into a compact lensless in-line holographic microscope. This centimeter-scale, all-silicon microscope utilizes a single emitter to simultaneously illuminate ~9.5 million pixels of a complementary metal-oxide-semiconductor imager.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA