Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36292945

RESUMEN

E2F4 was initially described as a transcription factor with a key function in the regulation of cell quiescence. Nevertheless, a number of recent studies have established that E2F4 can also play a relevant role in cell and tissue homeostasis, as well as tissue regeneration. For these non-canonical functions, E2F4 can also act in the cytoplasm, where it is able to interact with many homeostatic and synaptic regulators. Since E2F4 is expressed in the nervous system, it may fulfill a crucial role in brain function and homeostasis, being a promising multifactorial target for neurodegenerative diseases and brain aging. The regulation of E2F4 is complex, as it can be chemically modified through acetylation, from which we present evidence in the brain, as well as methylation, and phosphorylation. The phosphorylation of E2F4 within a conserved threonine motif induces cell cycle re-entry in neurons, while a dominant negative form of E2F4 (E2F4DN), in which the conserved threonines have been substituted by alanines, has been shown to act as a multifactorial therapeutic agent for Alzheimer's disease (AD). We generated transgenic mice neuronally expressing E2F4DN. We have recently shown using this mouse strain that expression of E2F4DN in 5xFAD mice, a known murine model of AD, improved cognitive function, reduced neuronal tetraploidization, and induced a transcriptional program consistent with modulation of amyloid-ß (Aß) peptide proteostasis and brain homeostasis recovery. 5xFAD/E2F4DN mice also showed reduced microgliosis and astrogliosis in both the cerebral cortex and hippocampus at 3-6 months of age. Here, we analyzed the immune response in 1 year-old 5xFAD/E2F4DN mice, concluding that reduced microgliosis and astrogliosis is maintained at this late stage. In addition, the expression of E2F4DN also reduced age-associated microgliosis in wild-type mice, thus stressing its role as a brain homeostatic agent. We conclude that E2F4DN transgenic mice represent a promising tool for the evaluation of E2F4 as a therapeutic target in neuropathology and brain aging.


Asunto(s)
Enfermedad de Alzheimer , Gliosis , Animales , Ratones , Ratones Transgénicos , Gliosis/patología , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Envejecimiento/genética , Treonina/metabolismo , Factores de Transcripción/metabolismo
2.
Mol Neurobiol ; 59(5): 3016-3039, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35254651

RESUMEN

Alzheimer's disease (AD) has a complex etiology, which requires a multifactorial approach for an efficient treatment. We have focused on E2 factor 4 (E2F4), a transcription factor that regulates cell quiescence and tissue homeostasis, controls gene networks affected in AD, and is upregulated in the brains of Alzheimer's patients and of APPswe/PS1dE9 and 5xFAD transgenic mice. E2F4 contains an evolutionarily conserved Thr-motif that, when phosphorylated, modulates its activity, thus constituting a potential target for intervention. In this study, we generated a knock-in mouse strain with neuronal expression of a mouse E2F4 variant lacking this Thr-motif (E2F4DN), which was mated with 5xFAD mice. Here, we show that neuronal expression of E2F4DN in 5xFAD mice potentiates a transcriptional program consistent with the attenuation of the immune response and brain homeostasis. This correlates with reduced microgliosis and astrogliosis, modulation of amyloid-ß peptide proteostasis, and blocking of neuronal tetraploidization. Moreover, E2F4DN prevents cognitive impairment and body weight loss, a known somatic alteration associated with AD. We also show that our finding is significant for AD, since E2F4 is expressed in cortical neurons from Alzheimer patients in association with Thr-specific phosphorylation, as evidenced by an anti-E2F4/anti-phosphoThr proximity ligation assay. We propose E2F4DN-based gene therapy as a promising multifactorial approach against AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Factor de Transcripción E2F4 , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Factor de Transcripción E2F4/genética , Factor de Transcripción E2F4/metabolismo , Ratones , Ratones Transgénicos
3.
Neurotherapeutics ; 18(4): 2484-2503, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34766258

RESUMEN

After decades of unfruitful work, no effective therapies are available for Alzheimer's disease (AD), likely due to its complex etiology that requires a multifactorial therapeutic approach. We have recently shown using transgenic mice that E2 factor 4 (E2F4), a transcription factor that regulates cell quiescence and tissue homeostasis, and controls gene networks affected in AD, represents a good candidate for a multifactorial targeting of AD. Here we show that the expression of a dominant negative form of human E2F4 (hE2F4DN), unable to become phosphorylated in a Thr-conserved motif known to modulate E2F4 activity, is an effective and safe AD multifactorial therapeutic agent. Neuronal expression of hE2F4DN in homozygous 5xFAD (h5xFAD) mice after systemic administration of an AAV.PHP.B-hSyn1.hE2F4DN vector reduced the production and accumulation of Aß in the hippocampus, attenuated reactive astrocytosis and microgliosis, abolished neuronal tetraploidization, and prevented cognitive impairment evaluated by Y-maze and Morris water maze, without triggering side effects. This treatment also reversed other alterations observed in h5xFAD mice such as paw-clasping behavior and body weight loss. Our results indicate that E2F4DN-based gene therapy is a promising therapeutic approach against AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Terapia Genética , Aprendizaje por Laberinto , Ratones , Ratones Transgénicos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA