Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur Heart J ; 45(19): 1753-1764, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753456

RESUMEN

BACKGROUND AND AIMS: Chronic stress associates with cardiovascular disease, but mechanisms remain incompletely defined. Advanced imaging was used to identify stress-related neural imaging phenotypes associated with atherosclerosis. METHODS: Twenty-seven individuals with post-traumatic stress disorder (PTSD), 45 trauma-exposed controls without PTSD, and 22 healthy controls underwent 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI). Atherosclerotic inflammation and burden were assessed using 18F-FDG PET (as maximal target-to-background ratio, TBR max) and MRI, respectively. Inflammation was assessed using high-sensitivity C-reactive protein (hsCRP) and leucopoietic imaging (18F-FDG PET uptake in spleen and bone marrow). Stress-associated neural network activity (SNA) was assessed on 18F-FDG PET as amygdala relative to ventromedial prefrontal cortex (vmPFC) activity. MRI diffusion tensor imaging assessed the axonal integrity (AI) of the uncinate fasciculus (major white matter tract connecting vmPFC and amygdala). RESULTS: Median age was 37 years old and 54% of participants were female. There were no significant differences in atherosclerotic inflammation between participants with PTSD and controls; adjusted mean difference in TBR max (95% confidence interval) of the aorta 0.020 (-0.098, 0.138), and of the carotids 0.014 (-0.091, 0.119). Participants with PTSD had higher hsCRP, spleen activity, and aorta atherosclerotic burden (normalized wall index). Participants with PTSD also had higher SNA and lower AI. Across the cohort, carotid atherosclerotic burden (standard deviation of wall thickness) associated positively with SNA and negatively with AI independent of Framingham risk score. CONCLUSIONS: In this study of limited size, participants with PTSD did not have higher atherosclerotic inflammation than controls. Notably, impaired cortico-limbic interactions (higher amygdala relative to vmPFC activity or disruption of their intercommunication) associated with carotid atherosclerotic burden. Larger studies are needed to refine these findings.


Asunto(s)
Enfermedades de las Arterias Carótidas , Tomografía de Emisión de Positrones , Trastornos por Estrés Postraumático , Humanos , Femenino , Masculino , Adulto , Trastornos por Estrés Postraumático/fisiopatología , Trastornos por Estrés Postraumático/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/fisiopatología , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Imagen por Resonancia Magnética , Persona de Mediana Edad , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiopatología , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiopatología , Radiofármacos , Estudios de Casos y Controles , Estrés Psicológico/fisiopatología , Estrés Psicológico/complicaciones
2.
NMR Biomed ; 36(1): e4823, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36031706

RESUMEN

High-risk atherosclerotic plaques are characterized by active inflammation and abundant leaky microvessels. We present a self-gated, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquisition with compressed sensing reconstruction and apply it to assess longitudinal changes in endothelial permeability in the aortic root of Apoe-/- atherosclerotic mice during natural disease progression. Twenty-four, 8-week-old, female Apoe-/- mice were divided into four groups (n = 6 each) and imaged with self-gated DCE-MRI at 4, 8, 12, and 16 weeks after high-fat diet initiation, and then euthanized for CD68 immunohistochemistry for macrophages. Eight additional mice were kept on a high-fat diet and imaged longitudinally at the same time points. Aortic-root pseudo-concentration curves were analyzed using a validated piecewise linear model. Contrast agent wash-in and washout slopes (b1 and b2 ) were measured as surrogates of aortic root endothelial permeability and compared with macrophage density by immunohistochemistry. b2 , indicating contrast agent washout, was significantly higher in mice kept on an high-fat diet for longer periods of time (p = 0.03). Group comparison revealed significant differences between mice on a high-fat diet for 4 versus 16 weeks (p = 0.03). Macrophage density also significantly increased with diet duration (p = 0.009). Spearman correlation between b2 from DCE-MRI and macrophage density indicated a weak relationship between the two parameters (r = 0.28, p = 0.20). Validated piecewise linear modeling of the DCE-MRI data showed that the aortic root contrast agent washout rate is significantly different during disease progression. Further development of this technique from a single-slice to a 3D acquisition may enable better investigation of the relationship between in vivo imaging of endothelial permeability and atherosclerotic plaques' genetic, molecular, and cellular makeup in this important model of disease.


Asunto(s)
Aorta Torácica , Medios de Contraste , Animales , Femenino , Ratones , Progresión de la Enfermedad , Imagen por Resonancia Magnética
3.
NMR Biomed ; 28(10): 1304-14, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26332103

RESUMEN

Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI studies of atherosclerosis have been limited to two-dimensional (2D) multi-slice imaging. Although providing the high spatial resolution required to image the arterial vessel wall, these approaches do not allow the quantification of plaque permeability with extensive anatomical coverage, an essential feature when imaging heterogeneous diseases, such as atherosclerosis. To our knowledge, we present the first systematic evaluation of three-dimensional (3D), high-resolution, DCE-MRI for the extensive quantification of plaque permeability along an entire vascular bed, with validation in atherosclerotic rabbits. We compare two acquisitions: 3D turbo field echo (TFE) with motion-sensitized-driven equilibrium (MSDE) preparation and 3D turbo spin echo (TSE). We find 3D TFE DCE-MRI to be superior to 3D TSE DCE-MRI in terms of temporal stability metrics. Both sequences show good intra- and inter-observer reliability, and significant correlation with ex vivo permeability measurements by Evans Blue near-infrared fluorescence (NIRF). In addition, we explore the feasibility of using compressed sensing to accelerate 3D DCE-MRI of atherosclerosis, to improve its temporal resolution and therefore the accuracy of permeability quantification. Using retrospective under-sampling and reconstructions, we show that compressed sensing alone may allow the acceleration of 3D DCE-MRI by up to four-fold. We anticipate that the development of high-spatial-resolution 3D DCE-MRI with prospective compressed sensing acceleration may allow for the more accurate and extensive quantification of atherosclerotic plaque permeability along an entire vascular bed. We foresee that this approach may allow for the comprehensive and accurate evaluation of plaque permeability in patients, and may be a useful tool to assess the therapeutic response to approved and novel drugs for cardiovascular disease.


Asunto(s)
Aorta Abdominal/patología , Enfermedades de la Aorta/patología , Permeabilidad Capilar , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Placa Aterosclerótica/patología , Animales , Medios de Contraste , Modelos Animales de Enfermedad , Estudios de Factibilidad , Variaciones Dependientes del Observador , Conejos
4.
Nanomedicine ; 11(5): 1133-40, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25791805

RESUMEN

The present study describes the development of a good manufacturing practice (GMP)-grade liposomal nanotherapy containing prednisolone phosphate for the treatment of inflammatory diseases. After formulation design, GMP production was commenced which yielded consistent, stable liposomes sized 100nm±10nm, with a prednisolone phosphate (PLP) incorporation efficiency of 3%-5%. Pharmacokinetics and toxicokinetics of GMP-grade liposomal nanoparticles were evaluated in healthy rats, which were compared to daily and weekly administration of free prednisolone phosphate, revealing a long circulatory half-life with minimal side effects. Subsequently, non-invasive multimodal clinical imaging after liposomal nanotherapy's intravenous administration revealed anti-inflammatory effects on the vessel wall of atherosclerotic rabbits. The present program led to institutional review board approval for two clinical trials with patients with atherosclerosis. FROM THE CLINICAL EDITOR: In drug discovery, bringing production to industrial scale is an essential process. In this article the authors describe the development of an anti-inflammatory nanoparticle according to good manufacturing practice. As a result, this paves the way for translating laboratory studies to clinical trials in humans.


Asunto(s)
Antiinflamatorios/administración & dosificación , Aterosclerosis/tratamiento farmacológico , Química Farmacéutica/métodos , Glucocorticoides/administración & dosificación , Prednisolona/análogos & derivados , Animales , Antiinflamatorios/farmacocinética , Antiinflamatorios/uso terapéutico , Antiinflamatorios/toxicidad , Aorta/efectos de los fármacos , Aorta/patología , Aterosclerosis/patología , Glucocorticoides/farmacocinética , Glucocorticoides/uso terapéutico , Glucocorticoides/toxicidad , Semivida , Humanos , Liposomas , Masculino , Prednisolona/administración & dosificación , Prednisolona/farmacocinética , Prednisolona/uso terapéutico , Prednisolona/toxicidad , Conejos , Ratas , Ratas Sprague-Dawley , Ratas Wistar
5.
Nanomedicine ; 11(5): 1039-46, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25791806

RESUMEN

Drug delivery to atherosclerotic plaques via liposomal nanoparticles may improve therapeutic agents' risk-benefit ratios. Our paper details the first clinical studies of a liposomal nanoparticle encapsulating prednisolone (LN-PLP) in atherosclerosis. First, PLP's liposomal encapsulation improved its pharmacokinetic profile in humans (n=13) as attested by an increased plasma half-life of 63h (LN-PLP 1.5mg/kg). Second, intravenously infused LN-PLP appeared in 75% of the macrophages isolated from iliofemoral plaques of patients (n=14) referred for vascular surgery in a randomized, placebo-controlled trial. LN-PLP treatment did however not reduce arterial wall permeability or inflammation in patients with atherosclerotic disease (n=30), as assessed by multimodal imaging in a subsequent randomized, placebo-controlled study. In conclusion, we successfully delivered a long-circulating nanoparticle to atherosclerotic plaque macrophages in patients, whereas prednisolone accumulation in atherosclerotic lesions had no anti-inflammatory effect. Nonetheless, the present study provides guidance for development and imaging-assisted evaluation of future nanomedicine in atherosclerosis. FROM THE CLINICAL EDITOR: In this study, the authors undertook the first clinical trial using long-circulating liposomal nanoparticle encapsulating prednisolone in patients with atherosclerosis, based on previous animal studies. Despite little evidence of anti-inflammatory effect, the results have provided a starting point for future development of nanomedicine in cardiovascular diseases.


Asunto(s)
Antiinflamatorios/administración & dosificación , Aterosclerosis/tratamiento farmacológico , Glucocorticoides/administración & dosificación , Macrófagos/efectos de los fármacos , Placa Aterosclerótica/tratamiento farmacológico , Prednisolona/administración & dosificación , Administración Intravenosa , Adulto , Anciano , Antiinflamatorios/farmacocinética , Antiinflamatorios/uso terapéutico , Arterias/efectos de los fármacos , Arterias/patología , Aterosclerosis/patología , Femenino , Glucocorticoides/farmacocinética , Glucocorticoides/uso terapéutico , Humanos , Liposomas , Macrófagos/patología , Masculino , Persona de Mediana Edad , Placa Aterosclerótica/patología , Prednisolona/farmacocinética , Prednisolona/uso terapéutico
6.
J Magn Reson Imaging ; 39(4): 1017, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24123809

RESUMEN

PURPOSE: This study examines template-based squared-difference registration for motion correction in dynamic contrast-enhanced (DCE) MRI studies of the carotid artery wall and compares the results of fixed-frame template-based registration with a previously proposed consecutive-frame registration method. MATERIALS AND METHODS: Ten T1-weighted black-blood, turbo spin-echo DCE-MRI studies of the carotid artery wall were used to test template-based squared-difference registration. An intermediate image from each series was selected as the fixed-frame template for registration. Squared-difference minimization was used to align each image and template. Time-intensity curves generated from data aligned with template-based squared-difference registration were compared with gold standard curves created by drawing regions of interest on each image in the series. The results were also compared with unregistered data and data after consecutive-frame squared-difference registration. RESULTS: An analysis of variance test of root mean-square error values between gold standard curve and curves from unregistered data and data registered with consecutive-frame and fixed-frame template-based methods was significant (P < 0.005) with template-based squared-difference registration producing curves that most closely matched the gold standard. CONCLUSION: A fixed-frame template-based squared-difference registration method was proposed and validated for alignment of DCE-MRI of carotid arteries.


Asunto(s)
Arteria Carótida Común/patología , Estenosis Carotídea/patología , Gadolinio DTPA , Interpretación de Imagen Asistida por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Técnica de Sustracción , Anciano , Medios de Contraste , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
Eur J Nucl Med Mol Imaging ; 40(12): 1884-93, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23942908

RESUMEN

PURPOSE: Inflammation and neovascularization in vulnerable atherosclerotic plaques are key features for severe clinical events. Dynamic contrast-enhanced (DCE) MRI and FDG PET are two noninvasive imaging techniques capable of quantifying plaque neovascularization and inflammatory infiltrate, respectively. However, their mutual role in defining plaque vulnerability and their possible overlap has not been thoroughly investigated. We studied the relationship between DCE-MRI and (18)F-FDG PET data from the carotid arteries of 40 subjects with coronary heart disease (CHD) or CHD risk equivalent, as a substudy of the dal-PLAQUE trial (NCT00655473). METHODS: The dal-PLAQUE trial was a multicenter study that evaluated dalcetrapib, a cholesteryl ester transfer protein modulator. Subjects underwent anatomical MRI, DCE-MRI and (18)F-FDG PET. Only baseline imaging and biomarker data (before randomization) from dal-PLAQUE were used as part of this substudy. Our primary goal was to evaluate the relationship between DCE-MRI and (18)F-FDG PET data. As secondary endpoints, we evaluated the relationship between (a) PET data and whole-vessel anatomical MRI data, and (b) DCE-MRI and matching anatomical MRI data. All correlations were estimated using a mixed linear model. RESULTS: We found a significant inverse relationship between several perfusion indices by DCE-MRI and (18)F-FDG uptake by PET. Regarding our secondary endpoints, there was a significant relationship between plaque burden measured by anatomical MRI with several perfusion indices by DCE-MRI and (18)F-FDG uptake by PET. No relationship was found between plaque composition by anatomical MRI and DCE-MRI or (18)F-FDG PET metrics. CONCLUSION: In this study we observed a significant, weak inverse relationship between inflammation measured as (18)F-FDG uptake by PET and plaque perfusion by DCE-MRI. Our findings suggest that there may be a complex relationship between plaque inflammation and microvascularization during the different stages of plaque development. (18)F-FDG PET and DCE-MRI may have complementary roles in future clinical practice in identifying subjects at high risk of cardiovascular events.


Asunto(s)
Enfermedades de las Arterias Carótidas/diagnóstico , Medios de Contraste , Fluorodesoxiglucosa F18 , Imagen por Resonancia Magnética , Imagen Multimodal , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad
8.
J Cardiovasc Magn Reson ; 15: 42, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23706156

RESUMEN

BACKGROUND: Dynamic contrast enhanced (DCE) cardiovascular magnetic resonance (CMR) is increasingly used to quantify microvessels and permeability in atherosclerosis. Accurate quantification depends on reliable sampling of both vessel wall (VW) uptake and contrast agent dynamic in the blood plasma (the so called arterial input function, AIF). This poses specific challenges in terms of spatial/temporal resolution and matched dynamic MR signal range, which are suboptimal in current vascular DCE-CMR protocols. In this study we describe a novel dual-imaging approach, which allows acquiring simultaneously AIF and VW images using different spatial/temporal resolution and optimizes imaging parameters for the two compartments. We refer to this new acquisition as SHILO, Simultaneous HI-/LOw-temporal (low-/hi-spatial) resolution DCE-imaging. METHODS: In SHILO, the acquisition of low spatial resolution single-shot AIF images is interleaved with segments of higher spatial resolution images of the VW. This allows sampling the AIF and VW with different spatial/temporal resolution and acquisition parameters, at independent spatial locations. We show the adequacy of this temporal sampling scheme by using numerical simulations. Following, we validate the MR signal of SHILO against a standard 2D spoiled gradient recalled echo (SPGR) acquisition with in vitro and in vivo experiments. Finally, we show feasibility of using SHILO imaging in subjects with carotid atherosclerosis. RESULTS: Our simulations confirmed the superiority of the SHILO temporal sampling scheme over conventional strategies that sample AIF and tissue curves at the same time resolution. Both the median relative errors and standard deviation of absolute parameter values were lower for the SHILO than for conventional sampling schemes. We showed equivalency of the SHILO signal and conventional 2D SPGR imaging, using both in vitro phantom experiments (R2 =0.99) and in vivo acquisitions (R2 =0.95). Finally, we showed feasibility of using the newly developed SHILO sequence to acquire DCE-CMR data in subjects with carotid atherosclerosis to calculate plaque perfusion indices. CONCLUSIONS: We successfully demonstrate the feasibility of using the newly developed SHILO dual-imaging technique for simultaneous AIF and VW imaging in DCE-CMR of atherosclerosis. Our initial results are promising and warrant further investigation of this technique in wider studies measuring kinetic parameters of plaque neovascularization with validation against gold standard techniques.


Asunto(s)
Enfermedades de las Arterias Carótidas/diagnóstico , Angiografía por Resonancia Magnética/métodos , Neovascularización Patológica/diagnóstico , Enfermedades de las Arterias Carótidas/patología , Medios de Contraste , Estudios de Factibilidad , Gadolinio DTPA , Humanos , Análisis de los Mínimos Cuadrados , Neovascularización Patológica/patología , Fantasmas de Imagen , Factores de Tiempo
9.
J Vis Exp ; (199)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37811943

RESUMEN

The current standard for measuring coronary artery calcification to determine the extent of atherosclerosis is by calculating the Agatston score from computed tomography (CT). However, the Agatston score disregards pixel values less than 130 Hounsfield Units (HU) and calcium regions less than 1 mm2. Due to this thresholding, the score is not sensitive to small, weakly attenuating regions of calcium deposition and may not detect nascent micro-calcification. A recently proposed metric called the spatially weighted calcium score (SWCS) also utilizes CT but does not include a threshold for HU and does not require elevated signals in contiguous pixels. Thus, the SWCS is sensitive to weakly attenuating, smaller calcium deposits and may improve the measurement of coronary heart disease risk. Currently, the SWCS is underutilized owing to the added computational complexity. To promote translation of the SWCS into clinical research and reliable, repeatable computation of the score, the aim of this study was to develop a semi-automatic graphical tool that calculates both the SWCS and the Agatston score. The program requires gated cardiac CT scans with a calcium hydroxyapatite phantom in the field of view. The phantom allows for deriving a weighting function, from which each pixel's weight is adjusted, allowing for the mitigation of signal variations and variability between scans. With all three anatomical views visible simultaneously, the user traces the course of the four main coronary arteries by placing points or regions of interest. Features such as scroll-to-zoom, double-click to delete, and brightness/contrast adjustment, along with written guidance at every step, make the program user-friendly and easy to use. Once tracing the arteries is complete, the program generates reports, which include the scores and snapshots of any visible calcium. The SWCS may reveal the presence of subclinical disease, which may be used for early intervention and lifestyle changes.


Asunto(s)
Calcinosis , Enfermedad de la Arteria Coronaria , Humanos , Calcio , Vasos Coronarios/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Reproducibilidad de los Resultados , Angiografía Coronaria/métodos
10.
Nat Sci Sleep ; 13: 1943-1953, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34737662

RESUMEN

PURPOSE: Visceral adipose tissue (VAT) is proinflammatory and is associated with cardiovascular (CV) disease. We investigated the relationship between obstructive sleep apnea (OSA) and visceral adipose tissue (VAT) metabolic activity in a pilot group of patients using positron-emission tomography/magnetic resonance imaging (PET/MRI) with 18F-fluorodeoxyglucose (FDG) tracer as a novel marker of adipose tissue inflammation. PATIENTS AND METHODS: We analyzed patients from an ongoing study, recruiting those with newly diagnosed, untreated OSA (Respiratory Disturbance Index [RDI] ≥ 5), using home sleep apnea testing (WatchPAT-200 Central-Plus). PET/MRI scans were acquired before continuous positive airway pressure (CPAP)-initiation, and after 3 months of CPAP therapy. Adipose tissue metabolic activity (18F-FDG-uptake) was measured using standardized uptake values (SUV) within the adipose tissue depots. The primary outcome was VAT SUVmean, and secondary outcomes included VAT volume, and subcutaneous adipose tissue (SAT) volume/SUVmean. Reproducibility and reliability of outcome measures were analyzed using intraclass correlation coefficients (ICC). Multivariable linear regression was used to evaluate the association between OSA and primary/secondary outcomes. RESULTS: Our analytical sample (n = 16) was 81% male (mean age 47 ± 15 years, mean BMI of 29.9 ± 4.8kg/m2). About 56% had moderate to severe OSA (mean RDI 23 ± 6 events/hour), and 50% were adherent to CPAP. We demonstrated excellent inter/intra-rater reliability and reproducibility for the primary and secondary outcomes. Patients with moderate-to-severe OSA had a higher VAT SUV mean compared to those with mild OSA (0.795 ± 0.154 vs 0.602 ± 0.19, p = 0.04). OSA severity was positively associated with VAT SUVmean (primary outcome), adjusted for age and BMI (B [SE] = 0.013 ± 0.005, p = 0.03). Change in VAT volume was inversely correlated with CPAP adherence in unadjusted analysis (B [SE] = -48.4 ± 18.7, p = 0.02). CONCLUSION: Derangements in VAT metabolic activity are implicated in adverse cardiometabolic outcomes and may be one of the key drivers of CV risk in OSA. Our results are hypothesis-generating, and suggest that VAT should be investigated in future studies using multi-modal imaging to understand its role as a potential mediator of adverse cardiometabolic risk in OSA.

11.
Angiogenesis ; 13(2): 87-99, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20526859

RESUMEN

Atherosclerosis is a progressive systemic disease of the large arteries characterized by the formation of plaques in the vessel wall. Despite our knowledge of its pathogenesis, many vulnerable plaques still remain undiagnosed while in their asymptomatic phase and manifest for the first time with dramatic clinical events, such as stroke or myocardial infarction. In recent years, it is becoming clearer that sudden clinical events do not necessarily correlate with the degree of luminal obstruction caused by lesions, but rather with plaque composition. In particular, the degree of plaque inflammation is important in the pathogenesis of atherosclerosis and is considered a good marker of high-risk/vulnerable plaques. The presence of inflammatory infiltrate and plaque neovascularization are both histological hallmarks of atherosclerotic plaque inflammation. Therefore, plaque angiogenesis represents an attractive target to try and identify asymptomatic high-risk lesions. Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) is a technique that has been used extensively in the past to study the vascularity of tumors and its changes following therapeutic intervention. Recently, delayed and dynamic contrast enhanced (CE) MRI have been proposed as non-invasive tools to study the extent of plaque neovascularization in animals and patients with atherosclerosis. In this review, we will provide a brief introduction on DCE-MRI acquisition and analysis techniques. We will follow this with a description of contrast enhanced MR methods for the detection and quantification of neovasculature in atherosclerosis, with an emphasis on DCE-MRI. Finally, we will examine the current limitations and challenges faced by DCE-MRI and briefly discuss its future applications in the context of atherosclerosis.


Asunto(s)
Aterosclerosis/complicaciones , Aterosclerosis/patología , Medios de Contraste , Imagen por Resonancia Magnética/métodos , Neovascularización Patológica/complicaciones , Neovascularización Patológica/diagnóstico , Animales , Humanos , Imagen Molecular
12.
World J Radiol ; 12(8): 142-155, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32913561

RESUMEN

The purpose of this study is to review the published literature for the range of radiographic findings present in patients suffering from coronavirus disease 2019 infection. This novel corona virus is currently the cause of a worldwide pandemic. Pulmonary symptoms and signs dominate the clinical picture and radiologists are called upon to evaluate chest radiographs (CXR) and computed tomography (CT) images to assess for infiltrates and to define their extent, distribution and progression. Multiple studies attempt to characterize the disease course by looking at the timing of imaging relative to the onset of symptoms. In general, plain CXR show bilateral disease with a tendency toward the lung periphery and have an appearance most consistent with viral pneumonia. Chest CT images are most notable for showing bilateral and peripheral ground glass and consolidated opacities and are marked by an absence of concomitant pulmonary nodules, cavitation, adenopathy and pleural effusions. Published literature mentioning organ systems aside from pulmonary manifestations are relatively less common, yet present and are addressed in this review. Similarly, publications focusing on imaging modalities aside from CXR and chest CT are sparse in this evolving crisis and are likewise addressed in this review. The role of imaging is examined as it is currently being debated in the medical community, which is not at all surprising considering the highly infectious nature of Severe Acute Respiratory Syndrome coronavirus 2.

13.
World J Radiol ; 12(1): 1-9, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31988700

RESUMEN

BACKGROUND: Automated, accurate, objective, and quantitative medical image segmentation has remained a challenging goal in computer science since its inception. This study applies the technique of convolutional neural networks (CNNs) to the task of segmenting carotid arteries to aid in the assessment of pathology. AIM: To investigate CNN's utility as an ancillary tool for researchers who require accurate segmentation of carotid vessels. METHODS: An expert reader delineated vessel wall boundaries on 4422 axial T2-weighted magnetic resonance images of bilateral carotid arteries from 189 subjects with clinically evident atherosclerotic disease. A portion of this dataset was used to train two CNNs (one to segment the vessel lumen and the other to segment the vessel wall) with the remaining portion used to test the algorithm's efficacy by comparing CNN segmented images with those of an expert reader. RESULTS: Overall quantitative assessment between automated and manual segmentations was determined by computing the DICE coefficient for each pair of segmented images in the test dataset for each CNN applied. The average DICE coefficient for the test dataset (CNN segmentations compared to expert's segmentations) was 0.96 for the lumen and 0.87 for the vessel wall. Pearson correlation values and the intra-class correlation coefficient (ICC) were computed for the lumen (Pearson = 0.98, ICC = 0.98) and vessel wall (Pearson = 0.88, ICC = 0.86) segmentations. Bland-Altman plots of area measurements for the CNN and expert readers indicate good agreement with a mean bias of 1%-8%. CONCLUSION: Although the technique produces reasonable results that are on par with expert human assessments, our application requires human supervision and monitoring to ensure consistent results. We intend to deploy this algorithm as part of a software platform to lessen researchers' workload to more quickly obtain reliable results.

14.
Sci Transl Med ; 11(506)2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31434756

RESUMEN

Nanomedicine research produces hundreds of studies every year, yet very few formulations have been approved for clinical use. This is due in part to a reliance on murine studies, which have limited value in accurately predicting translational efficacy in larger animal models and humans. Here, we report the scale-up of a nanoimmunotherapy from mouse to large rabbit and porcine atherosclerosis models, with an emphasis on the solutions we implemented to overcome production and evaluation challenges. Specifically, we integrated translational imaging readouts within our workflow to both analyze the nanoimmunotherapeutic's in vivo behavior and assess treatment response in larger animals. We observed our nanoimmunotherapeutic's anti-inflammatory efficacy in mice, as well as rabbits and pigs. Nanoimmunotherapy-mediated reduction of inflammation in the large animal models halted plaque progression, supporting the approach's translatability and potential to acutely treat atherosclerosis.


Asunto(s)
Aterosclerosis/inmunología , Aterosclerosis/terapia , Imagenología Tridimensional , Inmunoterapia , Nanomedicina , Animales , Apolipoproteínas E/deficiencia , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/toxicidad , Imagen por Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Tomografía de Emisión de Positrones , Conejos , Simvastatina/farmacología , Simvastatina/uso terapéutico , Especificidad de la Especie , Porcinos , Distribución Tisular
15.
J Acoust Soc Am ; 124(6): EL347-52, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19206692

RESUMEN

Brachytherapy to treat prostate cancer uses transrectal ultrasound to guide implantation of titanium-shelled radioactive seeds. Transperitoneal implantation allows errors in placement that cause suboptimal dosimetry. Conventional ultrasound cannot reliably image implanted seeds; therefore, seed misplacements cannot be corrected in the operating room. Previously, an algorithm based on singular spectrum analysis was shown to image palladium seeds better than B-mode ultrasound could. The algorithm is now applied to imaging an iodine seed in gel and in beef tissue as a function of seed angle relative to the incident ultrasound. Results indicate that both seed types are imaged reliably by the algorithm.


Asunto(s)
Braquiterapia , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Ultrasonografía , Algoritmos , Animales , Bovinos , Simulación por Computador , Geles , Humanos , Radioisótopos de Yodo/uso terapéutico , Masculino , Carne , Modelos Biológicos , Paladio/uso terapéutico , Peritoneo/diagnóstico por imagen , Fantasmas de Imagen , Radioisótopos , Procesamiento de Señales Asistido por Computador , Ultrasonografía/instrumentación
16.
J Acoust Soc Am ; 123(4): 2148-59, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18397022

RESUMEN

Transrectal-ultrasound-guided brachytherapy uses small titanium-shelled radioactive seeds to locally treat prostate cancer. During the implantation procedure, needles inserted transperitoneally cause gland movement resulting in seed misplacement and suboptimal dosimetry. In a previous study, an algorithm based on singular spectrum analysis (SSA) applied to envelope-detected ultrasound signals was proposed to determine seed locations [J. Mamou and E. J. Feleppa, J. Acoust. Soc. Am. 121, 1790-1801 (2007)]. Successful implementation of the SSA algorithm could allow correcting dosimetry errors during the implantation procedure. The algorithm demonstrated promise when the seed orientation was parallel to the needle and normal to the ultrasound beam. In this present study, the algorithm was tested when the seed orientation deviated up to 22 degrees from normality. Experimental data from a seed in an ideal environment and in beef were collected with a single-element, spherically focused, 5 MHz transducer. Simulations were designed and evaluated with the algorithm. Finally, objective quantitative scoring metrics were developed to evaluate the algorithm performance and for comparison with B-mode images. The results quantitatively established that the SSA algorithm always outperformed B-mode images and that seeds could be detected accurately up to a deviation of approximately 10 degrees .


Asunto(s)
Braquiterapia/métodos , Neoplasias de la Próstata/terapia , Ultrasonido , Afecto , Anciano , Algoritmos , Humanos , Masculino , Persona de Mediana Edad , Dosificación Radioterapéutica
17.
World J Radiol ; 10(3): 24-29, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29599936

RESUMEN

AIM: To examine effects of computed tomography (CT) image acquisition/reconstruction parameters on clot volume quantification in vitro for research method validation purposes. METHODS: This study was performed in conformance with HIPAA and IRB Regulations (March 2015-November 2016). A ten blood clot phantom was designed and scanned on a dual-energy CT scanner (SOMATOM Force, Siemens Healthcare GmBH, Erlangen, Germany) with varying pitch, iterative reconstruction, energy level and slice thickness. A range of clot and tube sizes were used in an attempt to replicate in vivo emboli found within central and segmental branches of the pulmonary arteries in patients with pulmonary emboli. Clot volume was the measured parameter and was analyzed by a single image analyst using a semi-automated region growing algorithm implemented in the FDA-approved Siemens syngo.via image analysis platform. Mixed model analysis was performed on the data. RESULTS: On the acquisition side, the continuous factor of energy showed no statistically significant effect on absolute clot volume quantification (P = 0.9898). On the other hand, when considering the fixed factor of pitch, there were statistically significant differences in clot volume quantification (P < 0.0001). On the reconstruction side, with the continuous factor of reconstruction slice thickness no statistically significant effect on absolute clot volume quantification was demonstrated (P = 0.4500). Also on the reconstruction side, with the fixed factor of using iterative reconstructions there was also no statistically significant effect on absolute clot volume quantification (P = 0.3011). In addition, there was excellent R2 correlation between the scale-measured mass of the clots both with respect to the CT measured volumes and with respect to volumes measure by the water displacement method. CONCLUSION: Aside from varying pitch, changing CT acquisition parameters and using iterative reconstructions had no significant impact on clot volume quantification with a semi-automated region growing algorithm.

18.
World J Radiol ; 10(10): 124-134, 2018 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-30386497

RESUMEN

AIM: To evaluate reproducibility of pulmonary embolism (PE) clot volume quantification using computed tomography pulmonary angiogram (CTPA) in a multicenter setting. METHODS: This study was performed using anonymized data in conformance with HIPAA and IRB Regulations (March 2015-November 2016). Anonymized CTPA data was acquired from 23 scanners from 18 imaging centers using each site's standard PE protocol. Two independent analysts measured PE volumes using a semi-automated region-growing algorithm on an FDA-approved image analysis platform. Total thrombus volume (TTV) was calculated per patient as the primary endpoint. Secondary endpoints were individual thrombus volume (ITV), Qanadli score and modified Qanadli score per patient. Inter- and intra-observer reproducibility were assessed using intra-class correlation coefficient (ICC) and Bland-Altman analysis. RESULTS: Analyst 1 found 72 emboli in the 23 patients with a mean number of emboli of 3.13 per patient with a range of 0-11 emboli per patient. The clot volumes ranged from 0.0041 - 47.34 cm3 (mean +/- SD, 5.93 +/- 10.15cm3). On the second read, analyst 1 found the same number and distribution of emboli with a range of volumes for read 2 from 0.0041 - 45.52 cm3 (mean +/- SD, 5.42 +/- 9.53cm3). Analyst 2 found 73 emboli in the 23 patients with a mean number of emboli of 3.17 per patient with a range of 0-11 emboli per patient. The clot volumes ranged from 0.00459-46.29 cm3 (mean +/- SD, 5.91 +/- 10.06 cm3). Inter- and intra-observer variability measurements indicated excellent reproducibility of the semi-automated method for quantifying PE volume burden. ICC for all endpoints was greater than 0.95 for inter- and intra-observer analysis. Bland-Altman analysis indicated no significant biases. CONCLUSION: Semi-automated region growing algorithm for quantifying PE is reproducible using data from multiple scanners and is a suitable method for image analysis in multicenter clinical trials.

19.
JACC Cardiovasc Imaging ; 11(2 Pt 2): 291-301, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29413439

RESUMEN

OBJECTIVES: The authors sought to develop combined positron emission tomography (PET) dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) to quantify plaque inflammation, permeability, and burden to evaluate the efficacy of a leukotriene A4 hydrolase (LTA4H) inhibitor in a rabbit model of atherosclerosis. BACKGROUND: Multimodality PET/MRI allows combining the quantification of atherosclerotic plaque inflammation, neovascularization, permeability, and burden by combined 18F-fluorodeoxyglucose (18F-FDG) PET, DCE-MRI, and morphological MRI. The authors describe a novel, integrated PET-DCE/MRI protocol to noninvasively quantify these parameters in aortic plaques of a rabbit model of atherosclerosis. As proof-of-concept, the authors apply this protocol to assess the efficacy of the novel LTA4H inhibitor BI691751. METHODS: New Zealand White male rabbits (N = 49) were imaged with integrated PET-DCE/MRI after atherosclerosis induction and 1 and 3 months after randomization into 3 groups: 1) placebo; 2) high-dose BI691751; and 3) low-dose BI691751. All animals were euthanized at the end of the study. RESULTS: Among the several metrics that were quantified, only maximum standardized uptake value and target-to-background ratio by 18F-FDG PET showed a modest, but significant, reduction in plaque inflammation in rabbits treated with low-dose BI691751 (p = 0.03), whereas no difference was detected in the high-fat diet and in the high-dose BI691751 groups. No differences in vessel wall area by MRI and area under the curve by DCE-MRI were detected in any of the groups. No differences in neovessel and macrophage density were found at the end of study among groups. CONCLUSIONS: The authors present a comprehensive, integrated 18F-FDG PET and DCE-MRI imaging protocol to noninvasively quantify plaque inflammation, neovasculature, permeability, and burden in a rabbit model of atherosclerosis on a simultaneous PET/MRI scanner. A modest reduction was found in plaque inflammation by 18F-FDG PET in the group treated with a low dose of the LTA4H inhibitor BI691751.


Asunto(s)
Antiinflamatorios/farmacología , Enfermedades de la Aorta/tratamiento farmacológico , Aterosclerosis/tratamiento farmacológico , Permeabilidad Capilar/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Imagen por Resonancia Magnética , Placa Aterosclerótica , Tomografía de Emisión de Positrones , Animales , Enfermedades de la Aorta/diagnóstico por imagen , Enfermedades de la Aorta/enzimología , Enfermedades de la Aorta/patología , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/enzimología , Aterosclerosis/patología , Biomarcadores/sangre , Medios de Contraste/administración & dosificación , Modelos Animales de Enfermedad , Epóxido Hidrolasas/metabolismo , Fluorodesoxiglucosa F18/administración & dosificación , Gadolinio DTPA/administración & dosificación , Inflamación/diagnóstico por imagen , Inflamación/enzimología , Inflamación/patología , Masculino , Imagen Multimodal , Valor Predictivo de las Pruebas , Conejos , Radiofármacos/administración & dosificación
20.
Artículo en Inglés | MEDLINE | ID: mdl-16555771

RESUMEN

An experimental system to take advantage of the imaging capabilities of a 5-ring polyvinylidene fluoride (PVDF)-based annular array is presented. The array has a 6-mm total aperture and a 12-mm geometric focus. The experimental system is designed to pulse a single element of the array and then digitize the received data of all array channels simultaneously. All transmit/receive pairs are digitized and then the data are post-processed with a synthetic-focusing technique to achieve an enhanced depth of field (DOF). The performance of the array is experimentally tested with a wire phantom consisting of 25-microm diameter wires diagonally spaced at 1-mm by 1-mm intervals. The phantom permitted the efficacy of the synthetic-focusing algorithm to be tested and was also used for two-way beam characterization. Experimental results are compared to a spatial impulse response method beam simulation. After synthetic focusing, the two-way echo amplitude was enhanced over the range of 8 to 19 mm and the 6-dB DOF spanned from 9 to 15 mm. For a wire at a fixed axial depth, the relative time delays between transmit/receive ring pairs agreed with theoretical predictions to within +/- 2 ns. To further test the system, B-mode images of an excised bovine eye were rendered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA