Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Rep Pract Oncol Radiother ; 28(4): 485-495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795234

RESUMEN

Background: Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide, and especially in Egypt. Early diagnosis of HCC greatly improves the survival and prognosis of patients. Low sensitivity and specificity of alpha-fetoprotein (AFP) has led to the demand for novel biomarkers of HCC. The aim of the present study was to evaluate the validity of frizzled-7 (FZD7) and glypican-3 (GPC3) gene expression as potential biomarkers for HCC early diagnosis, and to investigate the association between FZD7 rs2280509 polymorphism and HCC risk. Materials and methods: Quantification of FZD7 and GPC3 gene expression by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay, and genotyping FZD 7 (rs2280509 SNP) gene polymorphism using RT-PCR. Results: The current results revealed that FZD7 gene expression had a greater area under the curve (AUC) for identifying HCC than GPC3 gene expression and AFP levels. The combination of the three markers as a panel showed a better diagnostic performance with a greater AUC than any of the single markers alone (p < 0.05). The FZD7 rs2280509 polymorphism (CT) was found to be significantly associated with an increased risk of HCC. The CT genotype and T allele were significantly more prevalent in the HCC group compared to either the cirrhosis (p = 0.03) or control groups (p = 0.0009 and 0.002; respectively). Conclusion: FZD7 and GPC3 gene expressions have a complementary role in early HCC detection, with a greater diagnostic sensitivity and accuracy than AFP. In addition, FZD7 rs2280509 polymorphism is significantly associated with an increased risk of HCC in the Egyptian population.

2.
BMC Health Serv Res ; 22(1): 1437, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443795

RESUMEN

BACKGROUND: The present study aimed to determine the prevalence and forms of workplace violence (WPV) at the emergency departments (EDs) of Ain Shams University Hospitals (ASUH), Cairo and identify risk factors for WPV. METHODS: A cross-sectional study was conducted at the EDs of ASUH comprising attending physicians and nurses using a self-administered structured questionnaire. Interviews were conducted with patients and relatives attending these departments to explore attitudes toward WPV against healthcare workers. RESULTS: The present study comprised 108 healthcare professionals working in EDs. Verbal violence was the most common type of WPV (86.1%), followed by sexual (48.1%) and physical violence (34.3%). Patient relatives were the most common perpetrator of all types of violence. A lack of facilities was the most common risk factor for violence (82.4%), followed by overcrowding (50.9%) and patient culture (47.2%). On the other hand, approximately 78% of interviewed patients and relatives agreed that the occurrence of violence at EDs was due to several triggering factors, including improper manner of communication by healthcare workers (63.2%), lack of facilities (32.4%), waiting time (22.1%), and unmet expectations (22.1%). CONCLUSION: WPV represents a significant issue in EDs with violent behavior against healthcare workers widely accepted by attending patients.


Asunto(s)
Neoplasias del Ano , Servicio de Urgencia en Hospital , Violencia Laboral , Humanos , Estudios Transversales , Egipto/epidemiología , Hospitales Universitarios
3.
Physiol Mol Biol Plants ; 27(3): 469-481, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33854277

RESUMEN

Melatonin  has been identified as a signal molecule that regulates plant responses to different abiotic and biotic stresses. Melatonin (MT) and its precursor tryptophan (Try) have a major role in improving plant stress tolerance to different environmental stresses such as water deficiency. The rapid increase in the Egyptian population caused insufficient protein sources, especially those of animal origin, in their diet. The possible solution is to augment the diet with legumes such as white lupine which are relatively rich in protein. Thus, the current experimental work was carried out to find changes in growth, biochemical aspects and yield quantity and quality of white lupine plant with spraying of both MT and Try at different concentrations on plant shoot under water deficit stress conditions. Results showed that water deficit (75 or 50% of water irrigation requirements; WIR) caused significant reduction in growth, photosynthetic pigments, indole acetic acid and yield compared with those received 100% WIR. Seed yield significantly decreased (p < 0.05) by 26.98 and 41.64% by decreasing WIR to 75 and 50%. The decrease was accompanied by significant increase in phenolic contents, hydrogen peroxide, lipid peroxidation and some antioxidant enzymes, while nitrate reductase enzyme was decreased. However, external application of either MT or Try significantly alleviated the adverse effects of water deficit (growth suppression), since MT or Try-treated plants recovered more quickly than untreated plants. Moreover, MT or Try-treated plants had higher photosynthetic pigments, indole acetic acid, phenolic, as well as yield quantity and quality under the three WIR as compared with untreated plants. Melatonin treatment at 100 µM and Tryptophan at 200 µM increased weight of seeds/plant by 78.29 and 52.19%, 71.49 and 43.78% and 41.21 and 13.07% in plants irrigated with 100, 75 and 50% WIR, respectively. Exogenous MT and Try significantly reduced hydrogen peroxide and malondialdehyde content, while markedly increased the activities of antioxidant enzymes and nitrate reductase under different WIR. Finally, the current study concluded that MT and Try treatments alleviated the detrimental effects of water deficiency and accelerated the recovery mainly via improving white lupine plants tolerance in forms of enhancing photosynthetic pigments, indole acetic acid, phenolic and antioxidant capacity.

4.
Life (Basel) ; 13(2)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36836749

RESUMEN

Plant diseases are biotic stresses that restrict crop plants' ability to develop and produce. Numerous foliar diseases, such as chocolate spots, can cause significant production losses in Vicia faba plants. Certain chemical inducers, including salicylic acid (SA), oxalic acid (OA), nicotinic acid (NA), and benzoic acid (BA), were used in this study to assess efficacy in controlling these diseases. A foliar spray of these phenolic acids was used to manage the impacts of the biotic stress resulting from disease incidence. All tested chemical inducers resulted in a significant decrease in disease severity. They also enhanced the defense system of treated plants through increasing antioxidant enzyme activity (Peroxidase, polyphenol oxidase, ß-1, 3-glucanase, and chitinase) compared to the corresponding control. Healthy leaves of faba plants recorded the lowest (p < 0.05) values of all antioxidant activities compared to those plants infected by Botrytis fabae. Moreover, the separation of proteins using SDS-PAGE showed slight differences among treatments. Furthermore, foliar spray with natural organic acids reduced the adverse effects of fungal infection by expediting recovery. The SA (5 mM) treatment produced a pronounced increase in the upper, lower epidermis, palisade thickness, spongy tissues, midrib zone, length, and width of vascular bundle. The foliar application with other treatments resulted in a slight increase in the thickness of the examined layers, especially by benzoic acid. In general, all tested chemical inducers could alleviate the adverse effects of the biotic stress on faba bean plants infected by Botrytis fabae.

5.
Antioxidants (Basel) ; 11(6)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35740045

RESUMEN

Ionizing radiation is abiotic stress limiting the growth and productivity of crop plants. Stigmasterol has positive effects on the plant growth of many crops. The role of stigmasterol in alleviating the effects of ionizing radiation on plant metabolism and development is still unclear. Therefore, the study aimed to investigate the effects of pretreatments with γ-radiation (0, 25, and 50 Gy), foliar application of stigmasterol (0, 100, and 200 ppm), and their interaction on the growth, and biochemical constituents of wheat (Triticum aestivum L., var. Sids 12) plants. Gamma radiation at 25 Gy showed no significant difference in plant height, root length, no. of leaves, shoot fresh weight, root fresh weight, Chl a, ABA, soluble phenols, and MDA compared to the control values. Gamma rays at 50 Gy inhibited shoot and root lengths, flag leaf area, shoot fresh and dry weights, photosynthetic pigments, total soluble sugars, proline, and peroxidase activity. However, it stimulated total phenols, catalase activity, and lipid peroxidation. On the other hand, stigmasterol at 100 ppm showed no significant effects on some of the physiological attributes compared to control plants. Stigmasterol at 200 ppm improved plant growth parameters, photosynthetic pigments, proline, phenols, antioxidant enzyme, gibberellic acid, and indole acetic acid. Correspondingly, it inhibited total soluble sugars, abscisic acid, and lipid peroxidation. Moreover, the application of stigmasterol caused the appearance of new polypeptides and the reappearance of those missed by gamma radiation. Overall, stigmasterol could alleviate the adverse effects of gamma radiation on wheat plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA