Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(23): 4197-4199, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065058

RESUMEN

In this issue of Molecular Cell, Rahmanto et al.1 and Zhao et al.2 demonstrate that RNA-protein crosslinks contribute to formaldehyde toxicity by blocking protein synthesis. Furthermore, they identify a ubiquitin-mediated degradation system for RNA-protein crosslink resolution in eukaryotes.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN/genética , Ubiquitina/metabolismo , Proteína que Contiene Valosina/metabolismo
2.
Mol Cell ; 69(5): 866-878.e7, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499138

RESUMEN

Double-strand breaks (DSBs) are critical DNA lesions that robustly activate the elaborate DNA damage response (DDR) network. We identified a critical player in DDR fine-tuning: the E3/E4 ubiquitin ligase UBE4A. UBE4A's recruitment to sites of DNA damage is dependent on primary E3 ligases in the DDR and promotes enhancement and sustainment of K48- and K63-linked ubiquitin chains at these sites. This step is required for timely recruitment of the RAP80 and BRCA1 proteins and proper organization of RAP80- and BRCA1-associated protein complexes at DSB sites. This pathway is essential for optimal end resection at DSBs, and its abrogation leads to upregulation of the highly mutagenic alternative end-joining repair at the expense of error-free homologous recombination repair. Our data uncover a critical regulatory level in the DSB response and underscore the importance of fine-tuning the complex DDR network for accurate and balanced execution of DSB repair.


Asunto(s)
Proteína BRCA1/metabolismo , Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , Proteínas Nucleares/metabolismo , Reparación del ADN por Recombinación/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología , Proteína BRCA1/genética , Proteínas Portadoras/genética , Proteínas de Unión al ADN , Células HeLa , Chaperonas de Histonas , Humanos , Proteínas Nucleares/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo
3.
Nucleic Acids Res ; 52(2): 525-547, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38084926

RESUMEN

DNA-protein crosslinks (DPCs) are toxic DNA lesions wherein a protein is covalently attached to DNA. If not rapidly repaired, DPCs create obstacles that disturb DNA replication, transcription and DNA damage repair, ultimately leading to genome instability. The persistence of DPCs is associated with premature ageing, cancer and neurodegeneration. In mammalian cells, the repair of DPCs mainly relies on the proteolytic activities of SPRTN and the 26S proteasome, complemented by other enzymes including TDP1/2 and the MRN complex, and many of the activities involved are essential, restricting genetic approaches. For many years, the study of DPC repair in mammalian cells was hindered by the lack of standardised assays, most notably assays that reliably quantified the proteins or proteolytic fragments covalently bound to DNA. Recent interest in the field has spurred the development of several biochemical methods for DPC analysis. Here, we critically analyse the latest techniques for DPC isolation and the benefits and drawbacks of each. We aim to assist researchers in selecting the most suitable isolation method for their experimental requirements and questions, and to facilitate the comparison of results across different laboratories using different approaches.


Asunto(s)
Daño del ADN , Proteínas , Animales , Proteínas/genética , ADN/genética , ADN/metabolismo , Replicación del ADN , Reparación del ADN , Mamíferos/genética
4.
Trends Biochem Sci ; 46(1): 2-4, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33183910

RESUMEN

The protease SPRTN emerged as the essential enzyme for DNA-protein crosslink proteolysis repair. Biochemical and cell biological work indicated that SPRTN is a nonspecific protease. Recent and independent studies from Lou, Stingele, and Ramadan reveal that SPRTN activity is modulated via three layers of regulation that make it selective for DNA-protein crosslinks.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Humanos
5.
Nucleic Acids Res ; 51(11): 5396-5413, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-36971114

RESUMEN

The deubiquitinating enzyme Ataxin-3 (ATXN3) contains a polyglutamine (PolyQ) region, the expansion of which causes spinocerebellar ataxia type-3 (SCA3). ATXN3 has multiple functions, such as regulating transcription or controlling genomic stability after DNA damage. Here we report the role of ATXN3 in chromatin organization during unperturbed conditions, in a catalytic-independent manner. The lack of ATXN3 leads to abnormalities in nuclear and nucleolar morphology, alters DNA replication timing and increases transcription. Additionally, indicators of more open chromatin, such as increased mobility of histone H1, changes in epigenetic marks and higher sensitivity to micrococcal nuclease digestion were detected in the absence of ATXN3. Interestingly, the effects observed in cells lacking ATXN3 are epistatic to the inhibition or lack of the histone deacetylase 3 (HDAC3), an interaction partner of ATXN3. The absence of ATXN3 decreases the recruitment of endogenous HDAC3 to the chromatin, as well as the HDAC3 nuclear/cytoplasm ratio after HDAC3 overexpression, suggesting that ATXN3 controls the subcellular localization of HDAC3. Importantly, the overexpression of a PolyQ-expanded version of ATXN3 behaves as a null mutant, altering DNA replication parameters, epigenetic marks and the subcellular distribution of HDAC3, giving new insights into the molecular basis of the disease.


Asunto(s)
Ataxina-3 , Cromatina , Replicación del ADN , Humanos , Ataxina-3/genética , Ataxina-3/metabolismo , Cromatina/genética , Daño del ADN , Enfermedad de Machado-Joseph/genética , Proteínas Represoras/metabolismo
6.
Mol Cell ; 61(3): 449-460, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26748828

RESUMEN

G-quadruplex (G4)-forming genomic sequences, including telomeres, represent natural replication fork barriers. Stalled replication forks can be stabilized and restarted by homologous recombination (HR), which also repairs DNA double-strand breaks (DSBs) arising at collapsed forks. We have previously shown that HR facilitates telomere replication. Here, we demonstrate that the replication efficiency of guanine-rich (G-rich) telomeric repeats is decreased significantly in cells lacking HR. Treatment with the G4-stabilizing compound pyridostatin (PDS) increases telomere fragility in BRCA2-deficient cells, suggesting that G4 formation drives telomere instability. Remarkably, PDS reduces proliferation of HR-defective cells by inducing DSB accumulation, checkpoint activation, and deregulated G2/M progression and by enhancing the replication defect intrinsic to HR deficiency. PDS toxicity extends to HR-defective cells that have acquired olaparib resistance through loss of 53BP1 or REV7. Altogether, these results highlight the therapeutic potential of G4-stabilizing drugs to selectively eliminate HR-compromised cells and tumors, including those resistant to PARP inhibition.


Asunto(s)
Aminoquinolinas/farmacología , Antineoplásicos/farmacología , Proteína BRCA1/deficiencia , Proteína BRCA2/deficiencia , Biomarcadores de Tumor/deficiencia , G-Cuádruplex/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Ácidos Picolínicos/farmacología , Animales , Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores de Tumor/genética , Proliferación Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Masculino , Ratones Desnudos , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Interferencia de ARN , Telómero/efectos de los fármacos , Telómero/genética , Telómero/metabolismo , Factores de Tiempo , Transfección , Carga Tumoral/efectos de los fármacos , Proteína 1 de Unión al Supresor Tumoral P53 , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Mol Cell ; 64(4): 704-719, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27871366

RESUMEN

The cytotoxicity of DNA-protein crosslinks (DPCs) is largely ascribed to their ability to block the progression of DNA replication. DPCs frequently occur in cells, either as a consequence of metabolism or exogenous agents, but the mechanism of DPC repair is not completely understood. Here, we characterize SPRTN as a specialized DNA-dependent and DNA replication-coupled metalloprotease for DPC repair. SPRTN cleaves various DNA binding substrates during S-phase progression and thus protects proliferative cells from DPC toxicity. Ruijs-Aalfs syndrome (RJALS) patient cells with monogenic and biallelic mutations in SPRTN are hypersensitive to DPC-inducing agents due to a defect in DNA replication fork progression and the inability to eliminate DPCs. We propose that SPRTN protease represents a specialized DNA replication-coupled DPC repair pathway essential for DNA replication progression and genome stability. Defective SPRTN-dependent clearance of DPCs is the molecular mechanism underlying RJALS, and DPCs are contributing to accelerated aging and cancer.


Asunto(s)
Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/química , Inestabilidad Genómica , Secuencia de Aminoácidos , Sitios de Unión , Reactivos de Enlaces Cruzados/química , ADN/genética , ADN/metabolismo , Daño del ADN , Proteínas de Unión al ADN/genética , Etopósido/química , Formaldehído/química , Expresión Génica , Humanos , Cinética , Mutación , Unión Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Síndrome , Rayos Ultravioleta
8.
EMBO J ; 38(21): e102361, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31613024

RESUMEN

The E3 ubiquitin ligase RNF8 (RING finger protein 8) is a pivotal enzyme for DNA repair. However, RNF8 hyper-accumulation is tumour-promoting and positively correlates with genome instability, cancer cell invasion, metastasis and poor patient prognosis. Very little is known about the mechanisms regulating RNF8 homeostasis to preserve genome stability. Here, we identify the cellular machinery, composed of the p97/VCP ubiquitin-dependent unfoldase/segregase and the Ataxin 3 (ATX3) deubiquitinase, which together form a physical and functional complex with RNF8 to regulate its proteasome-dependent homeostasis under physiological conditions. Under genotoxic stress, when RNF8 is rapidly recruited to sites of DNA lesions, the p97-ATX3 machinery stimulates the extraction of RNF8 from chromatin to balance DNA repair pathway choice and promote cell survival after ionising radiation (IR). Inactivation of the p97-ATX3 complex affects the non-homologous end joining DNA repair pathway and hypersensitises human cancer cells to IR. We propose that the p97-ATX3 complex is the essential machinery for regulation of RNF8 homeostasis under both physiological and genotoxic conditions and that targeting ATX3 may be a promising strategy to radio-sensitise BRCA-deficient cancers.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ataxina-3/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Homeostasis , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Adenosina Trifosfatasas/genética , Ataxina-3/genética , Supervivencia Celular , Cromatina/genética , Proteínas de Unión al ADN/genética , Inestabilidad Genómica , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
9.
Nucleic Acids Res ; 48(22): 12483-12501, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33166394

RESUMEN

Efficient S phase entry is essential for development, tissue repair, and immune defences. However, hyperactive or expedited S phase entry causes replication stress, DNA damage and oncogenesis, highlighting the need for strict regulation. Recent paradigm shifts and conflicting reports demonstrate the requirement for a discussion of the G1/S transition literature. Here, we review the recent studies, and propose a unified model for the S phase entry decision. In this model, competition between mitogen and DNA damage signalling over the course of the mother cell cycle constitutes the predominant control mechanism for S phase entry of daughter cells. Mitogens and DNA damage have distinct sensing periods, giving rise to three Commitment Points for S phase entry (CP1-3). S phase entry is mitogen-independent in the daughter G1 phase, but remains sensitive to DNA damage, such as single strand breaks, the most frequently-occurring lesions that uniquely threaten DNA replication. To control CP1-3, dedicated hubs integrate the antagonistic mitogenic and DNA damage signals, regulating the stoichiometric cyclin: CDK inhibitor ratio for ultrasensitive control of CDK4/6 and CDK2. This unified model for the G1/S cell cycle transition combines the findings of decades of study, and provides an updated foundation for cell cycle research.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Ciclo Celular/genética , División Celular/genética , Replicación del ADN/genética , Daño del ADN/genética , Fase G1/genética , Humanos , Fase S/genética , Transducción de Señal/genética
10.
Trends Biochem Sci ; 42(6): 483-495, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28416269

RESUMEN

Proteins that are covalently bound to DNA constitute a specific type of DNA lesion known as DNA-protein crosslinks (DPCs). DPCs represent physical obstacles to the progression of DNA replication. If not repaired, DPCs cause stalling of DNA replication forks that consequently leads to DNA double-strand breaks, the most cytotoxic DNA lesion. Although DPCs are common DNA lesions, the mechanism of DPC repair was unclear until now. Recent work unveiled that DPC repair is orchestrated by proteolysis performed by two distinct metalloproteases, SPARTAN in metazoans and Wss1 in yeast. This review summarizes recent discoveries on two proteases in DNA replication-coupled DPC repair and establishes DPC proteolysis repair as a separate DNA repair pathway for genome stability and protection from accelerated aging and cancer.


Asunto(s)
ADN/metabolismo , Neoplasias/metabolismo , Proteínas/metabolismo , Proteolisis , Envejecimiento , ADN/genética , Reparación del ADN , Humanos , Neoplasias/genética
11.
Biochem Soc Trans ; 49(3): 1251-1263, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34003246

RESUMEN

Hypoxia is a feature of most solid tumours and predicts for poor prognosis. In radiobiological hypoxia (<0.1% O2) cells become up to three times more resistant to radiation. The biological response to radiobiological hypoxia is one of few physiologically relevant stresses that activates both the unfolded protein and DNA damage responses (UPR and DDR). Links between these pathways have been identified in studies carried out in normoxia. Based in part on these previous studies and recent work from our laboratory, we hypothesised that the biological response to hypoxia likely includes overlap between the DDR and UPR. While inhibition of the DDR is a recognised strategy for improving radiation response, the possibility of achieving this through targeting the UPR has not been realised. We carried out a systematic review to identify links between the DDR and UPR, in human cell lines exposed to <2% O2. Following PRISMA guidance, literature from January 2010 to October 2020 were retrieved via Ovid MEDLINE and evaluated. A total of 202 studies were included. LAMP3, ULK1, TRIB3, CHOP, NOXA, NORAD, SIAH1/2, DYRK2, HIPK2, CREB, NUPR1, JMJD2B, NRF2, GSK-3B, GADD45a, GADD45b, STAU1, C-SRC, HK2, CAV1, CypB, CLU, IGFBP-3 and SP1 were highlighted as potential links between the hypoxic DDR and UPR. Overall, we identified very few studies which demonstrate a molecular link between the DDR and UPR in hypoxia, however, it is clear that many of the molecules highlighted warrant further investigation under radiobiological hypoxia as these may include novel therapeutic targets to improve radiotherapy response.


Asunto(s)
Daño del ADN , Hipoxia/genética , Neoplasias/genética , Transducción de Señal/genética , Respuesta de Proteína Desplegada/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Humanos , Hipoxia/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
12.
Chromosoma ; 126(1): 17-32, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27086594

RESUMEN

Genome amplification (DNA synthesis) is one of the most demanding cellular processes in all proliferative cells. The DNA replication machinery (also known as the replisome) orchestrates genome amplification during S-phase of the cell cycle. Genetic material is particularly vulnerable to various events that can challenge the replisome during its assembly, activation (firing), progression (elongation) and disassembly from chromatin (termination). Any disturbance of the replisome leads to stalling of the DNA replication fork and firing of dormant replication origins, a process known as DNA replication stress. DNA replication stress is considered to be one of the main causes of sporadic cancers and other pathologies related to tissue degeneration and ageing. The mechanisms of replisome assembly and elongation during DNA synthesis are well understood. However, once DNA synthesis is complete, the process of replisome disassembly, and its removal from chromatin, remains unclear. In recent years, a growing body of evidence has alluded to a central role in replisome regulation for the ubiquitin-dependent protein segregase p97, also known as valosin-containing protein (VCP) in metazoans and Cdc48 in lower eukaryotes. By orchestrating the spatiotemporal turnover of the replisome, p97 plays an essential role in DNA replication. In this review, we will summarise our current knowledge about how p97 controls the replisome from replication initiation, to elongation and finally termination. We will also further examine the more recent findings concerning the role of p97 and how mutations in p97 cofactors, also known as adaptors, cause DNA replication stress induced genomic instability that leads to cancer and accelerated ageing. To our knowledge, this is the first comprehensive review concerning the mechanisms involved in the regulation of DNA replication by p97.


Asunto(s)
Replicación del ADN , Ubiquitina/metabolismo , Proteína que Contiene Valosina/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Susceptibilidad a Enfermedades , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Unión Proteica , Proteína que Contiene Valosina/química , Proteína que Contiene Valosina/genética
13.
Nature ; 450(7173): 1258-62, 2007 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-18097415

RESUMEN

During division of metazoan cells, the nucleus disassembles to allow chromosome segregation, and then reforms in each daughter cell. Reformation of the nucleus involves chromatin decondensation and assembly of the double-membrane nuclear envelope around the chromatin; however, regulation of the process is still poorly understood. In vitro, nucleus formation requires p97 (ref. 3), a hexameric ATPase implicated in membrane fusion and ubiquitin-dependent processes. However, the role and relevance of p97 in nucleus formation have remained controversial. Here we show that p97 stimulates nucleus reformation by inactivating the chromatin-associated kinase Aurora B. During mitosis, Aurora B inhibits nucleus reformation by preventing chromosome decondensation and formation of the nuclear envelope membrane. During exit from mitosis, p97 binds to Aurora B after its ubiquitylation and extracts it from chromatin. This leads to inactivation of Aurora B on chromatin, thus allowing chromatin decondensation and nuclear envelope formation. These data reveal an essential pathway that regulates reformation of the nucleus after mitosis and defines ubiquitin-dependent protein extraction as a common mechanism of Cdc48/p97 activity also during nucleus formation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Cromatina/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfatasas/deficiencia , Adenosina Trifosfatasas/genética , Animales , Aurora Quinasas , Caenorhabditis elegans , Proteínas de Ciclo Celular/genética , Núcleo Celular/enzimología , Femenino , Masculino , Membrana Nuclear/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Interferencia de ARN , Ubiquitina/metabolismo , Ubiquitinación , Proteína que Contiene Valosina , Xenopus laevis
14.
Cell Chem Biol ; 30(1): 3-21, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36640759

RESUMEN

Protein homeostasis deficiencies underlie various cancers and neurodegenerative diseases. The ubiquitin-proteasome system (UPS) and autophagy are responsible for most of the protein degradation in mammalian cells and, therefore, represent attractive targets for cancer therapy and that of neurodegenerative diseases. The ATPase p97, also known as VCP, is a central component of the UPS that extracts and disassembles its substrates from various cellular locations and also regulates different steps in autophagy. Several UPS- and autophagy-targeting drugs are in clinical trials. In this review, we focus on the development of various p97 inhibitors, including the ATPase inhibitors CB-5083 and CB-5339, which reached clinical trials by demonstrating effective anti-tumor activity across various tumor models, providing an effective alternative to targeting protein degradation for cancer therapy. Here, we provide an overview of how different p97 inhibitors have evolved over time both as basic research tools and effective UPS-targeting cancer therapies in the clinic.


Asunto(s)
Inhibidores Enzimáticos , Neoplasias , Animales , Humanos , Proteínas de Ciclo Celular/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Mamíferos/metabolismo , Neoplasias/tratamiento farmacológico , Ubiquitina/metabolismo , Proteína que Contiene Valosina/metabolismo , Adenosina Trifosfatasas/metabolismo
15.
Autophagy ; 18(1): 40-49, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33726628

RESUMEN

TEX264 (testes expressed gene 264) is a single-pass transmembrane protein, consisting of an N-terminal hydrophobic region, a gyrase inhibitory (GyrI)-like domain, and a loosely structured C terminus. TEX264 was first identified as an endoplasmic reticulum (ER)-resident Atg8-family-binding protein that mediates the degradation of portions of the ER during starvation (i.e., reticulophagy). More recently, TEX264 was identified as a cofactor of VCP/p97 ATPase that promotes the repair of covalently trapped TOP1 (DNA topoisomerase 1)-DNA crosslinks. This review summarizes the current knowledge of TEX264 as a protein with roles in both autophagy and DNA repair and provides an evolutionary and structural analysis of GyrI proteins. Based on our phylogenetic analysis, we provide evidence that TEX264 is a member of a large superfamily of GyrI-like proteins that evolved in bacteria and are present in metazoans, including invertebrates and chordates.Abbreviations: Atg8: autophagy related 8; Atg39: autophagy related 39; Cdc48: cell division cycle 48; CGAS: cyclic GMP-AMP synthase; DPC: DNA-protein crosslinks; DSB: DNA double-strand break; ER: endoplasmic reticulum; GyrI: gyrase inhibitory domain; LRR: leucine-rich repeat; MAFFT: multiple alignment using fast Fourier transform; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; STUBL: SUMO targeted ubiquitin ligase; SUMO: small ubiquitin-like modifier; TEX264: testis expressed gene 264; TOP1cc: topoisomerase 1-cleavage complex; UBZ: ubiquitin binding Zn finger domain; VCP: valosin containing protein.


Asunto(s)
Autofagia , Estrés del Retículo Endoplásmico , Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , ADN , Reparación del ADN , Estrés del Retículo Endoplásmico/genética , Filogenia , Ubiquitina/genética
16.
Nat Cell Biol ; 24(1): 62-73, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35013556

RESUMEN

Poly (ADP-ribose) polymerase (PARP) inhibitors elicit antitumour activity in homologous recombination-defective cancers by trapping PARP1 in a chromatin-bound state. How cells process trapped PARP1 remains unclear. Using wild-type and a trapping-deficient PARP1 mutant combined with rapid immunoprecipitation mass spectrometry of endogenous proteins and Apex2 proximity labelling, we delineated mass spectrometry-based interactomes of trapped and non-trapped PARP1. These analyses identified an interaction between trapped PARP1 and the ubiquitin-regulated p97 ATPase/segregase. We found that following trapping, PARP1 is SUMOylated by PIAS4 and subsequently ubiquitylated by the SUMO-targeted E3 ubiquitin ligase RNF4, events that promote recruitment of p97 and removal of trapped PARP1 from chromatin. Small-molecule p97-complex inhibitors, including a metabolite of the clinically used drug disulfiram (CuET), prolonged PARP1 trapping and enhanced PARP inhibitor-induced cytotoxicity in homologous recombination-defective tumour cells and patient-derived tumour organoids. Together, these results suggest that p97 ATPase plays a key role in the processing of trapped PARP1 and the response of tumour cells to PARP inhibitors.


Asunto(s)
Cromatina/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteína que Contiene Valosina/metabolismo , Línea Celular Tumoral , Disulfiram/análogos & derivados , Disulfiram/farmacología , Células HCT116 , Células HeLa , Humanos , Células MCF-7 , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Sumoilación , Factores de Transcripción/metabolismo , Ubiquitinación
17.
Commun Biol ; 4(1): 11, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33398053

RESUMEN

Proteins covalently attached to DNA, also known as DNA-protein crosslinks (DPCs), are common and bulky DNA lesions that interfere with DNA replication, repair, transcription and recombination. Research in the past several years indicates that cells possess dedicated enzymes, known as DPC proteases, which digest the protein component of a DPC. Interestingly, DPC proteases also play a role in proteolysis beside DPC repair, such as in degrading excess histones during DNA replication or controlling DNA replication checkpoints. Here, we discuss the importance of DPC proteases in DNA replication, genome stability and their direct link to human diseases and cancer therapy.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Proteasas de Ácido Aspártico/metabolismo , Daño del ADN , Replicación del ADN , Humanos , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Receptores Virales/metabolismo
18.
STAR Protoc ; 2(4): 100978, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34888531

RESUMEN

DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3'-single-stranded DNA (3'-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2'-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines. For complete details on the use and execution of this protocol, please refer to Kilgas et al. (2021).


Asunto(s)
Bromodesoxiuridina/química , ADN de Cadena Simple , Microscopía Fluorescente/métodos , Bromodesoxiuridina/metabolismo , Línea Celular Tumoral , ADN de Cadena Simple/análisis , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Inestabilidad Genómica/genética , Humanos
19.
Cell Rep ; 37(10): 110080, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879279

RESUMEN

DNA-protein crosslinks (DPCs) are a specific type of DNA lesion in which proteins are covalently attached to DNA. Unrepaired DPCs lead to genomic instability, cancer, neurodegeneration, and accelerated aging. DPC proteolysis was recently identified as a specialized pathway for DPC repair. The DNA-dependent protease SPRTN and the 26S proteasome emerged as two independent proteolytic systems. DPCs are also repaired by homologous recombination (HR), a canonical DNA repair pathway. While studying the cellular response to DPC formation, we identify ubiquitylation and SUMOylation as two major signaling events in DNA replication-coupled DPC repair. DPC ubiquitylation recruits SPRTN to repair sites, promoting DPC removal. DPC SUMOylation prevents DNA double-strand break formation, HR activation, and potentially deleterious genomic rearrangements. In this way, SUMOylation channels DPC repair toward SPRTN proteolysis, which is a safer pathway choice for DPC repair and prevention of genomic instability.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN de Neoplasias/metabolismo , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Sumoilación , Roturas del ADN de Doble Cadena , Replicación del ADN , ADN de Neoplasias/biosíntesis , ADN de Neoplasias/genética , Proteínas de Unión al ADN/genética , Femenino , Células HEK293 , Células HeLa , Recombinación Homóloga , Humanos , Masculino , Proteolisis , Mutaciones Letales Sintéticas
20.
Nat Commun ; 12(1): 6959, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845229

RESUMEN

Efficient entry into S phase of the cell cycle is necessary for embryonic development and tissue homoeostasis. However, unscheduled S phase entry triggers DNA damage and promotes oncogenesis, underlining the requirement for strict control. Here, we identify the NUCKS1-SKP2-p21/p27 axis as a checkpoint pathway for the G1/S transition. In response to mitogenic stimulation, NUCKS1, a transcription factor, is recruited to chromatin to activate expression of SKP2, the F-box component of the SCFSKP2 ubiquitin ligase, leading to degradation of p21 and p27 and promoting progression into S phase. In contrast, DNA damage induces p53-dependent transcriptional repression of NUCKS1, leading to SKP2 downregulation, p21/p27 upregulation, and cell cycle arrest. We propose that the NUCKS1-SKP2-p21/p27 axis integrates mitogenic and DNA damage signalling to control S phase entry. The Cancer Genome Atlas (TCGA) data reveal that this mechanism is hijacked in many cancers, potentially allowing cancer cells to sustain uncontrolled proliferation.


Asunto(s)
Transformación Celular Neoplásica/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Fase S/genética , Proteínas Quinasas Asociadas a Fase-S/genética , Células A549 , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HT29 , Humanos , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patología , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Quinasas Asociadas a Fase-S/antagonistas & inhibidores , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Células Sf9 , Transducción de Señal , Spodoptera , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA