Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 181(7): 1489-1501.e15, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32473127

RESUMEN

Understanding adaptive immunity to SARS-CoV-2 is important for vaccine development, interpreting coronavirus disease 2019 (COVID-19) pathogenesis, and calibration of pandemic control measures. Using HLA class I and II predicted peptide "megapools," circulating SARS-CoV-2-specific CD8+ and CD4+ T cells were identified in ∼70% and 100% of COVID-19 convalescent patients, respectively. CD4+ T cell responses to spike, the main target of most vaccine efforts, were robust and correlated with the magnitude of the anti-SARS-CoV-2 IgG and IgA titers. The M, spike, and N proteins each accounted for 11%-27% of the total CD4+ response, with additional responses commonly targeting nsp3, nsp4, ORF3a, and ORF8, among others. For CD8+ T cells, spike and M were recognized, with at least eight SARS-CoV-2 ORFs targeted. Importantly, we detected SARS-CoV-2-reactive CD4+ T cells in ∼40%-60% of unexposed individuals, suggesting cross-reactive T cell recognition between circulating "common cold" coronaviruses and SARS-CoV-2.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/inmunología , Epítopos de Linfocito T , Neumonía Viral/inmunología , Betacoronavirus/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19 , Vacunas contra la COVID-19 , Convalecencia , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Reacciones Cruzadas , Humanos , Leucocitos Mononucleares/inmunología , Pandemias , Neumonía Viral/sangre , Neumonía Viral/metabolismo , Neumonía Viral/virología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas Virales/metabolismo , Vacunas Virales/inmunología
2.
Cell ; 183(4): 996-1012.e19, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33010815

RESUMEN

Limited knowledge is available on the relationship between antigen-specific immune responses and COVID-19 disease severity. We completed a combined examination of all three branches of adaptive immunity at the level of SARS-CoV-2-specific CD4+ and CD8+ T cell and neutralizing antibody responses in acute and convalescent subjects. SARS-CoV-2-specific CD4+ and CD8+ T cells were each associated with milder disease. Coordinated SARS-CoV-2-specific adaptive immune responses were associated with milder disease, suggesting roles for both CD4+ and CD8+ T cells in protective immunity in COVID-19. Notably, coordination of SARS-CoV-2 antigen-specific responses was disrupted in individuals ≥ 65 years old. Scarcity of naive T cells was also associated with aging and poor disease outcomes. A parsimonious explanation is that coordinated CD4+ T cell, CD8+ T cell, and antibody responses are protective, but uncoordinated responses frequently fail to control disease, with a connection between aging and impaired adaptive immune responses to SARS-CoV-2.


Asunto(s)
Inmunidad Adaptativa , Antígenos Virales/inmunología , Infecciones por Coronavirus/patología , Neumonía Viral/patología , Enfermedad Aguda , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Betacoronavirus/inmunología , Betacoronavirus/aislamiento & purificación , Betacoronavirus/metabolismo , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Citocinas/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Adulto Joven
3.
Nature ; 632(8025): 630-636, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39085605

RESUMEN

The upper airway is an important site of infection, but immune memory in the human upper airway is poorly understood, with implications for COVID-19 and many other human diseases1-4. Here we demonstrate that nasal and nasopharyngeal swabs can be used to obtain insights into these challenging problems, and define distinct immune cell populations, including antigen-specific memory B cells and T cells, in two adjacent anatomical sites in the upper airway. Upper airway immune cell populations seemed stable over time in healthy adults undergoing monthly swabs for more than 1 year, and prominent tissue resident memory T (TRM) cell and B (BRM) cell populations were defined. Unexpectedly, germinal centre cells were identified consistently in many nasopharyngeal swabs. In subjects with SARS-CoV-2 breakthrough infections, local virus-specific BRM cells, plasma cells and germinal centre B cells were identified, with evidence of local priming and an enrichment of IgA+ memory B cells in upper airway compartments compared with blood. Local plasma cell populations were identified with transcriptional profiles of longevity. Local virus-specific memory CD4+ TRM cells and CD8+ TRM cells were identified, with diverse additional virus-specific T cells. Age-dependent upper airway immunological shifts were observed. These findings provide new understanding of immune memory at a principal mucosal barrier tissue in humans.


Asunto(s)
Memoria Inmunológica , Células B de Memoria , Células T de Memoria , Mucosa Nasal , Nasofaringe , SARS-CoV-2 , Adulto , Humanos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/citología , COVID-19/inmunología , COVID-19/virología , Centro Germinal/inmunología , Centro Germinal/citología , Inmunoglobulina A/inmunología , Memoria Inmunológica/inmunología , Células B de Memoria/inmunología , Células T de Memoria/inmunología , Mucosa Nasal/inmunología , Mucosa Nasal/virología , Nasofaringe/virología , Nasofaringe/inmunología , Células Plasmáticas/inmunología , Células Plasmáticas/citología , SARS-CoV-2/inmunología
4.
J Infect Dis ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39036987

RESUMEN

Therapeutic monoclonal antibodies (mAbs) have been studied in humans, but the impact on immune memory of mAb treatment during an ongoing infection has remained unclear. We evaluated the effect of infusion of the anti-SARS-CoV-2 spike receptor binding domain (RBD) mAb bamlanivimab on memory B cells (MBCs) in SARS-CoV-2-infected individuals. Bamlanivimab treatment skewed the repertoire of memory B cells targeting Spike towards non-RBD epitopes. Furthermore, the relative affinity of RBD memory B cells was weaker in mAb-treated individuals compared to placebo-treated individuals over time. Subsequently, after mRNA COVID-19 vaccination, memory B cell differences persisted and mapped to a specific reduction in recognition of the class II RBD site, the same RBD epitope recognized by bamlanivimab. These findings indicate a substantial role of antibody feedback in regulating memory B cell responses to infection, and single mAb administration can continue to impact memory B cell responses to additional antigen exposures months later.

5.
Transpl Infect Dis ; 22(6): e13402, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32634289

RESUMEN

BACKGROUND: Despite increased utilization of hepatitis C virus-infected (HCV+) organs for transplantation into HCV-uninfected recipients, there is lack of standardization in HCV-related patient education/consent and limited data on financial and social impact on patients. METHODS: We conducted a survey on patients with donor-derived HCV infection at our center transplanted between 4/1/2017 and 11/1/2019 to assess: why patients chose to accept HCV+ organ(s), the adequacy of their pre-transplant HCV education and informed consent process, financial issues related to copays after discharge, and social challenges they faced. RESULTS: Among 49 patients surveyed, transplanted organs included heart (n = 19), lung (n = 9), kidney (n = 11), liver (n = 4), heart/kidney (n = 4), and liver/kidney (n = 2). Many recipients accepted an HCV-viremic (HCV-V) organ due to perceived reduction in waitlist time (n = 33) and/or trust in their physician's recommendation (n = 29). Almost all (n = 47) felt that pre-transplant education and consent was appropriate. Thirty patients had no copay for direct-acting antivirals (DAA) for HCV, including 21 with household income <$20 000; seven had copays of <$100 and one had a copay >$1000. Two patients reported feeling isolated due to HCV infection and eight reported higher than anticipated medication costs. Patients' biggest concern was potential HCV transmission to partners (n = 18) and family/friends (n = 15). Overall almost all (n = 47) patients reported a positive experience with HCV-V organ transplantation. CONCLUSION: We demonstrate that real-world patient experiences surrounding HCV-V organ transplantation have been favorable. Almost all patients report comprehensive HCV-related pre-transplant consent and education. Additionally, medication costs and social isolation/exclusion were not barriers to the use of these organs.


Asunto(s)
Hepatitis C , Trasplante de Órganos/efectos adversos , Donantes de Tejidos , Antivirales/economía , Antivirales/uso terapéutico , Hepatitis C/tratamiento farmacológico , Hepatitis C/etiología , Humanos , Evaluación del Resultado de la Atención al Paciente , Listas de Espera
6.
J Virol ; 89(21): 10970-81, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26311885

RESUMEN

UNLABELLED: The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome CoV (SARS-CoV) represent highly pathogenic human CoVs that share a property to inhibit host gene expression at the posttranscriptional level. Similar to the nonstructural protein 1 (nsp1) of SARS-CoV that inhibits host gene expression at the translational level, we report that MERS-CoV nsp1 also exhibits a conserved function to negatively regulate host gene expression by inhibiting host mRNA translation and inducing the degradation of host mRNAs. Furthermore, like SARS-CoV nsp1, the mRNA degradation activity of MERS-CoV nsp1, most probably triggered by its ability to induce an endonucleolytic RNA cleavage, was separable from its translation inhibitory function. Despite these functional similarities, MERS-CoV nsp1 used a strikingly different strategy that selectively targeted translationally competent host mRNAs for inhibition. While SARS-CoV nsp1 is localized exclusively in the cytoplasm and binds to the 40S ribosomal subunit to gain access to translating mRNAs, MERS-CoV nsp1 was distributed in both the nucleus and the cytoplasm and did not bind stably to the 40S subunit, suggesting a distinctly different mode of targeting translating mRNAs. Interestingly, consistent with this notion, MERS-CoV nsp1 selectively targeted mRNAs, which are transcribed in the nucleus and transported to the cytoplasm, for translation inhibition and mRNA degradation but spared exogenous mRNAs introduced directly into the cytoplasm or virus-like mRNAs that originate in the cytoplasm. Collectively, these data point toward a novel viral strategy wherein the cytoplasmic origin of MERS-CoV mRNAs facilitates their escape from the inhibitory effects of MERS-CoV nsp1. IMPORTANCE: Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human CoV that emerged in Saudi Arabia in 2012. MERS-CoV has a zoonotic origin and poses a major threat to public health. However, little is known about the viral factors contributing to the high virulence of MERS-CoV. Many animal viruses, including CoVs, encode proteins that interfere with host gene expression, including those involved in antiviral immune responses, and these viral proteins are often major virulence factors. The nonstructural protein 1 (nsp1) of CoVs is one such protein that inhibits host gene expression and is a major virulence factor. This study presents evidence for a strategy used by MERS-CoV nsp1 to inhibit host gene expression that has not been described previously for any viral protein. The present study represents a meaningful step toward a better understanding of the factors and molecular mechanisms governing the virulence and pathogenesis of MERS-CoV.


Asunto(s)
Núcleo Celular/metabolismo , Regulación de la Expresión Génica/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , ARN Mensajero/metabolismo , Proteínas no Estructurales Virales/metabolismo , Northern Blotting , Western Blotting , Citoplasma/metabolismo , Cartilla de ADN , Dipeptidil Peptidasa 4/metabolismo , Electroporación , Células HEK293 , Humanos , Microscopía Confocal , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Plásmidos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
bioRxiv ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38045374

RESUMEN

Therapeutic anti-SARS-CoV-2 monoclonal antibodies (mAbs) have been extensively studied in humans, but the impact on immune memory of mAb treatment during an ongoing immune response has remained unclear. Here, we evaluated the effect of infusion of the anti-SARS-CoV-2 spike receptor binding domain (RBD) mAb bamlanivimab on memory B cells (MBCs) in SARS-CoV-2-infected individuals. Bamlanivimab treatment skewed the repertoire of memory B cells targeting Spike towards non-RBD epitopes. Furthermore, the relative affinity of RBD memory B cells was weaker in mAb-treated individuals compared to placebo-treated individuals over time. Subsequently, after mRNA COVID-19 vaccination, memory B cell differences persisted and mapped to a specific defect in recognition of the class II RBD site, the same RBD epitope recognized by bamlanivimab. These findings indicate a substantial role of antibody feedback in regulating human memory B cell responses, both to infection and vaccination. These data indicate that mAb administration can promote alterations in the epitopes recognized by the B cell repertoire, and the single administration of mAb can continue to determine the fate of B cells in response to additional antigen exposures months later.

8.
bioRxiv ; 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37546810

RESUMEN

Tumor initiation represents the initial step in tumorigenesis during which normal progenitor cells undergo cell fate transition to cancer. Most studies investigating cancer-driving mechanisms in solid tumors rely on analyses of established malignant lesions, and thus cannot directly capture processes underlying the reprogramming of normal progenitor cells into cancer cells. Here, using spatiotemporally controlled oncogene expression in a genetically engineered system we demonstrate that concomitant YAP activation and HPV E6-E7 -mediated inhibition of tumor suppressive pathways is sufficient to rapidly reprogram oral epithelial progenitor cells (OEPCs) into cancer stem cells (CSCs). Single cell analyses of these nascent CSCs revealed hallmark transcriptional programs driving tumor initiation. Importantly, these CSC-enriched expression signatures distinguish normal tissue from malignant head and neck tumors and are associated with poor patient survival. Elucidating mechanisms underlying OEPC to CSC reprogramming may offer new insights to halt the conversion of premalignant cells into invasive carcinoma. HIGHLIGHTS: YAP and HPV E6-E7 reprogram oral epithelial progenitor cells into cancer stem cells. Single cell analyses reveal the transcriptional architecture of tumor initiation.CSC transcriptional programs distinguish normal tissue from carcinoma.CSC signatures are associated with poor head and neck cancer survival.

9.
bioRxiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37961119

RESUMEN

T cells are involved in protective immunity against numerous viral infections. Limited data have been available regarding roles of human T cell responses controlling SARS-CoV-2 viral clearance in primary COVID-19. Here, we examined longitudinal SARS-CoV-2 upper respiratory tract viral RNA levels and early adaptive immune responses from 95 unvaccinated individuals with acute COVID-19. Acute SARS-CoV-2-specific CD4 and CD8 T cell responses were evaluated in addition to antibody responses. Most individuals with acute COVID-19 developed rapid SARS-CoV-2-specific T cell responses during infection, and both early CD4 T cell and CD8 T cell responses correlated with reduced upper respiratory tract SARS-CoV-2 viral RNA, independent of neutralizing antibody titers. Overall, our findings indicate a distinct protective role for SARS-CoV-2-specific T cells during acute COVID-19.

10.
Cell Rep Med ; 4(11): 101244, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37858338

RESUMEN

Uveal melanoma (UM) is the most prevalent cancer of the eye in adults, driven by activating mutation of GNAQ/GNA11; however, there are limited therapies against UM and metastatic UM (mUM). Here, we perform a high-throughput chemogenetic drug screen in GNAQ-mutant UM contrasted with BRAF-mutant cutaneous melanoma, defining the druggable landscape of these distinct melanoma subtypes. Across all compounds, darovasertib demonstrates the highest preferential activity against UM. Our investigation reveals that darovasertib potently inhibits PKC as well as PKN/PRK, an AGC kinase family that is part of the "dark kinome." We find that downstream of the Gαq-RhoA signaling axis, PKN converges with ROCK to control FAK, a mediator of non-canonical Gαq-driven signaling. Strikingly, darovasertib synergizes with FAK inhibitors to halt UM growth and promote cytotoxic cell death in vitro and in preclinical metastatic mouse models, thus exposing a signaling vulnerability that can be exploited as a multimodal precision therapy against mUM.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Neoplasias de la Úvea , Animales , Ratones , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/uso terapéutico , Evaluación Preclínica de Medicamentos , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA