Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(13): 5036-41, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24707050

RESUMEN

The pattern of neurodegeneration in Alzheimer's disease (AD) is very distinctive: neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau selectively affect pyramidal neurons of the aging association cortex that interconnect extensively through glutamate synapses on dendritic spines. In contrast, primary sensory cortices have few NFTs, even in late-stage disease. Understanding this selective vulnerability, and why advancing age is such a high risk factor for the degenerative process, may help to reveal disease etiology and provide targets for intervention. Our study has revealed age-related increase in cAMP-dependent protein kinase (PKA) phosphorylation of tau at serine 214 (pS214-tau) in monkey dorsolateral prefrontal association cortex (dlPFC), which specifically targets spine synapses and the Ca(2+)-storing spine apparatus. This increase is mirrored by loss of phosphodiesterase 4A from the spine apparatus, consistent with increase in cAMP-Ca(2+) signaling in aging spines. Phosphorylated tau was not detected in primary visual cortex, similar to the pattern observed in AD. We also report electron microscopic evidence of previously unidentified vesicular trafficking of phosphorylated tau in normal association cortex--in axons in young dlPFC vs. in spines in aged dlPFC--consistent with the transneuronal lesion spread reported in genetic rodent models. pS214-Tau was not observed in normal aged mice, suggesting that it arises with the evolutionary expansion of corticocortical connections in primates, crossing the threshold into NFTs and degeneration in humans. Thus, the cAMP-Ca(2+) signaling mechanisms, needed for flexibly modulating network strength in young association cortex, confer vulnerability to degeneration when dysregulated with advancing age.


Asunto(s)
Envejecimiento/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/patología , Corteza Prefrontal/enzimología , Corteza Prefrontal/patología , Proteínas tau/metabolismo , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Macaca mulatta , Ratones , Modelos Biológicos , Fosforilación , Transporte de Proteínas , Vesículas Transportadoras/metabolismo
2.
Neuron ; 40(4): 835-45, 2003 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-14622586

RESUMEN

Activation of the cAMP/protein kinase A (PKA) pathway has been proposed as a mechanism for improving age-related cognitive deficits based on studies of hippocampal function. However, normal aging also afflicts prefrontal cortical cognitive functioning. Here, we report that agents that increase PKA activity impair rather than improve prefrontal cortical function in aged rats and monkeys with prefrontal cortical deficits. Conversely, PKA inhibition ameliorates prefrontal cortical cognitive deficits. Western blot and immunohistochemical analyses of rat brain further indicate that the cAMP/PKA pathway becomes disinhibited in the prefrontal cortex with advancing age. These data demonstrate that PKA inhibition, rather than activation, is the appropriate strategy for restoring prefrontal cortical cognitive abilities in the elderly.


Asunto(s)
Envejecimiento/metabolismo , Trastornos del Conocimiento/enzimología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/análogos & derivados , Trastornos de la Memoria/enzimología , Corteza Prefrontal/enzimología , 3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Envejecimiento/efectos de los fármacos , Animales , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/fisiopatología , AMP Cíclico/farmacología , AMP Cíclico/uso terapéutico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Inhibidores Enzimáticos/farmacología , Macaca mulatta , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/fisiopatología , Nootrópicos/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiopatología , Ratas , Ratas Sprague-Dawley , Rolipram/farmacología , Rolipram/uso terapéutico , Tionucleótidos/farmacología , Tionucleótidos/uso terapéutico , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
3.
Pharmacol Ther ; 113(3): 523-36, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17303246

RESUMEN

Norepinephrine (NE) has widespread projections throughout the brain, and thus, is ideally positioned to orchestrate neural functions based on arousal state. For example, NE can increase "signal/noise" ratio in the processing of sensory stimuli, and can enhance long-term memory consolidation in the amygdala and hippocampus through actions at alpha-1 and beta adrenoceptors. Over the last 20 years, NE has also been shown to play a powerful role in regulating the working memory and attention functions of the prefrontal cortex (PFC). Moderate levels of NE released under control conditions strengthen prefrontal cortical functions via actions at post-synaptic alpha-2A adrenoceptors with high affinity for NE, while high levels of NE release during stress impair PFC cortical functions via alpha-1 and possibly beta-1 receptors with lower affinity for NE. Thus, levels of NE determine whether prefrontal cortical or posterior cortical systems control our behavior and thought. Understanding these receptor mechanisms has led to new intelligent treatments for neuropsychiatric disorders associated with PFC dysfunction.


Asunto(s)
Cognición/fisiología , Norepinefrina/fisiología , Corteza Prefrontal/fisiología , Receptores Adrenérgicos alfa/fisiología , Receptores Adrenérgicos beta/fisiología , Cognición/efectos de los fármacos , Humanos , Locus Coeruleus/fisiología , Memoria/efectos de los fármacos , Memoria/fisiología , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/fisiopatología , Norepinefrina/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiopatología , Receptores Adrenérgicos alfa/efectos de los fármacos , Receptores Adrenérgicos alfa/metabolismo , Receptores Adrenérgicos beta/efectos de los fármacos , Receptores Adrenérgicos beta/metabolismo
4.
Front Pharmacol ; 9: 89, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29472863

RESUMEN

5-Hydroxytryptamine2A (5-HT2A) receptors are enriched in layers I and Va of the rat prefrontal cortex and neocortex and their activation increases the frequency of glutamatergic excitatory post-synaptic potentials/currents (EPSP/Cs) onto layer V pyramidal cells. A number of other G-protein coupled receptors (GPCRs) are also enriched in cortical layers I and Va and either induce (α1-adrenergic and orexin2) or suppress (metabotropic glutamate2 [mGlu2], adenosine A1, µ-opioid) both 5-HT-induced EPSCs and head twitches or head shakes induced by the phenethylamine hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI). Another neurotransmitter receptor also localized to apparent thalamocortical afferents to layers I and Va of the rat prefrontal cortex and neocortex is the ß2-adrenergic receptor. Therefore, we conducted preliminary electrophysiological experiments with rat brain slices examining the effects of epinephrine on electrically-evoked EPSPs following bath application of DOI (3 µM). Epinephrine (0.3-10 µM) suppressed the late EPSPs produced by electrical stimulation and DOI. The selective ß2-adrenergic receptor antagonist ICI-118,551 (300 nM) resulted in a rightward shift of the epinephrine concentration-response relationship. We also tested the selective ß2-adrenergic receptor agonist clenbuterol and the antagonist ICI-118,551 on DOI-induced head twitches. Clenbuterol (0.3-3 mg/kg, i.p.) suppressed DOI (1.25 mg/kg, i.p.)-induced head twitches. This clenbuterol effect appeared to be at least partially reversed by the selective ß2-adrenergic receptor antagonist ICI-118,553 (0.01-1 mg/kg, i.p.), with significant reversal at doses of 0.1 and 1 mg/kg. Thus, ß2-adrenergic receptor activation reverses the effects of phenethylamine hallucinogens in the rat prefrontal cortex. While Gi/Go-coupled GPCRs have previously been shown to suppress both the electrophysiological and behavioral effects of 5-HT2A receptor activation in the mPFC, the present work appears to extend this suppressant action to a Gs-coupled GPCR. Furthermore, the modulation of 5-HT2A receptor activation-induced glutamate release onto mPFC layer V pyramidal neurons apical dendrites by a range GPCRs in rat brain slices appears to results in behaviorally salient effects of relevance when screening for novel CNS therapeutic drugs.

5.
Trends Mol Med ; 11(3): 121-8, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15760770

RESUMEN

cAMP-dependent protein kinase A (PKA) signaling has a key role in memory processes and has been identified as a potential therapeutic target for memory disorders. The activation of PKA signaling is crucial for the consolidation of long-term memories dependent on the hippocampus and/or the amygdala, By contrast, initial studies indicate that cAMP-PKA activation might impair the working memory and executive functions of the prefrontal cortex. Furthermore, PKA activation in the nucleus accumbens might increase sensitivity to addiction. These complexities must be heeded when designing medications aimed at altering PKA activity. PKA might be most practical as a therapeutic target in disorders with global alterations in cAMP-PKA activity due to genetic or environmental factors.


Asunto(s)
Encéfalo/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Trastornos de la Memoria/metabolismo , Modelos Biológicos , Transducción de Señal/fisiología , Factores de Edad , Animales , Conducta Adictiva/fisiopatología , Emociones/fisiología , Humanos , Aprendizaje/fisiología , Trastornos de la Memoria/tratamiento farmacológico
6.
Biol Psychiatry ; 58(11): 894-900, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16043136

RESUMEN

BACKGROUND: Previous studies have indicated that beta adrenergic receptor stimulation has no effect on the cognitive functioning of the prefrontal cortex (PFC). Blockade of beta-1 and beta-2 receptors in the PFC with the mixed beta-1/beta-2 antagonist, propanolol, had no effect on spatial working memory performance. However, more selective blockade of beta-1 or beta-2 receptors might show efficacy if the two receptors have opposite effects on PFC function. The current study examined the effects of the selective beta-1 antagonist, betaxolol, on working memory in rats and monkeys. METHODS: In rats, betaxolol (.0011-1.11 microg/.5 microL) was infused into the PFC 5 min before delayed alternation testing. Monkeys were systemically injected with betaxolol (.0000011-.11 mg/kg) 2 hours before delayed response testing. RESULTS: Betaxolol produced a dose-related improvement in working memory performance following either direct PFC infusion in rats, or systemic administration in monkeys. However, some aged monkeys developed serious pancreatic problems over the course of this study. CONCLUSIONS: These findings suggest that endogenous activation of the beta-1 adrenergic receptor impairs PFC cognitive function. These results may have therapeutic relevance to post-traumatic stress disorder or other disorders with excessive noradrenergic activity and PFC dysfunction. Pancreatic side effects in aged subjects taking betaxolol warrants further investigation.


Asunto(s)
Antagonistas de Receptores Adrenérgicos beta 1 , Antagonistas Adrenérgicos beta/farmacología , Betaxolol/farmacología , Memoria a Corto Plazo/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Antagonistas Adrenérgicos beta/toxicidad , Animales , Atención/efectos de los fármacos , Betaxolol/toxicidad , Cognición/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Hipnóticos y Sedantes , Macaca mulatta , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Microinyecciones , Enfermedades Pancreáticas/inducido químicamente , Corteza Prefrontal , Ratas , Técnicas Estereotáxicas
7.
Biol Psychiatry ; 78(12): 860-70, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25731884

RESUMEN

BACKGROUND: Psychiatric disorders such as schizophrenia are worsened by stress, and working memory deficits are often a central feature of illness. Working memory is mediated by the persistent firing of prefrontal cortical (PFC) pyramidal neurons. Stress impairs working memory via high levels of dopamine D1 receptor (D1R) activation of cyclic adenosine monophosphate signaling, which reduces PFC neuronal firing. The current study examined whether D1R-cyclic adenosine monophosphate signaling reduces neuronal firing and impairs working memory by increasing the open state of hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels, which are concentrated on dendritic spines where PFC pyramidal neurons interconnect. METHODS: A variety of methods were employed to test this hypothesis: dual immunoelectron microscopy localized D1R and HCN channels, in vitro recordings tested for D1R actions on HCN channel current, while recordings in monkeys performing a working memory task tested for D1R-HCN channel interactions in vivo. Finally, cognitive assessments following intra-PFC infusions of drugs examined D1R-HCN channel interactions on working memory performance. RESULTS: Immunoelectron microscopy confirmed D1R colocalization with HCN channels near excitatory-like synapses on dendritic spines in primate PFC. Mouse PFC slice recordings demonstrated that D1R stimulation increased HCN channel current, while local HCN channel blockade in primate PFC protected task-related firing from D1R-mediated suppression. D1R stimulation in rat or monkey PFC impaired working memory performance, while HCN channel blockade in PFC prevented this impairment in rats exposed to either stress or D1R stimulation. CONCLUSIONS: These findings suggest that D1R stimulation or stress weakens PFC function via opening of HCN channels at network synapses.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/fisiología , Células Piramidales/fisiología , Receptores de Dopamina D1/fisiología , Estrés Fisiológico , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/antagonistas & inhibidores , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Macaca mulatta , Masculino , Ratones , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/ultraestructura , Células Piramidales/efectos de los fármacos , Células Piramidales/ultraestructura , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura
8.
Neurobiol Aging ; 29(7): 1060-9, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17363115

RESUMEN

Previous studies using a mixed beta1 and beta2 adrenergic antagonist, propanolol, have indicated that beta adrenoceptors have little effect on the cognitive functioning of the prefrontal cortex. However, recent studies have suggested that endogenous stimulation of beta1 adrenoceptors impairs working memory in both rats and monkeys. Since propanolol has no effect on cognition, we hypothesized that activation of beta2 adrenoceptors might improve performance in a working memory task. We tested this hypothesis by observing the effects of the beta2 agonist, clenbuterol, on spatial working memory performance. Clenbuterol was either infused directly into the prefrontal cortex (rats) or administered systemically (monkeys). Results demonstrated that clenbuterol improved performance in many young and aged rats and monkeys who performed poorly under control conditions. Actions at beta2 adrenoceptors were confirmed by challenging the clenbuterol response with the beta2 adrenergic antagonist, ICI 118,551. The effects of clenbuterol were not universal and depended on the cognitive status of the animal: the drug moderately improved only a subset of animals with working memory impairment.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2 , Clenbuterol/administración & dosificación , Aprendizaje por Laberinto/fisiología , Memoria/efectos de los fármacos , Memoria/fisiología , Corteza Prefrontal/fisiología , Análisis y Desempeño de Tareas , Animales , Femenino , Macaca mulatta , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie
9.
Cell ; 129(2): 397-410, 2007 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-17448997

RESUMEN

Spatial working memory (WM; i.e., "scratchpad" memory) is constantly updated to guide behavior based on representational knowledge of spatial position. It is maintained by spatially tuned, recurrent excitation within networks of prefrontal cortical (PFC) neurons, evident during delay periods in WM tasks. Stimulation of postsynaptic alpha2A adrenoceptors (alpha2A-ARs) is critical for WM. We report that alpha2A-AR stimulation strengthens WM through inhibition of cAMP, closing Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels and strengthening the functional connectivity of PFC networks. Ultrastructurally, HCN channels and alpha2A-ARs were colocalized in dendritic spines in PFC. In electrophysiological studies, either alpha2A-AR stimulation, cAMP inhibition or HCN channel blockade enhanced spatially tuned delay-related firing of PFC neurons. Conversely, delay-related network firing collapsed under conditions of excessive cAMP. In behavioral studies, either blockade or knockdown of HCN1 channels in PFC improved WM performance. These data reveal a powerful mechanism for rapidly altering the strength of WM networks in PFC.


Asunto(s)
Canales Iónicos/fisiología , Memoria a Corto Plazo/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Receptores Adrenérgicos alfa 2/fisiología , Agonistas alfa-Adrenérgicos/farmacología , Animales , AMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Espinas Dendríticas/química , Espinas Dendríticas/ultraestructura , Electrofisiología , Guanfacina/farmacología , Canales Iónicos/análisis , Macaca mulatta , Masculino , Neuronas/química , Corteza Prefrontal/citología , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 2/análisis
10.
Learn Mem ; 13(6): 770-6, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17101879

RESUMEN

The working-memory functions of the prefrontal cortex (PFC) are improved by stimulation of postsynaptic, alpha2A-adrenoceptors, especially in aged animals with PFC cognitive deficits. Thus, the alpha2A-adrenoceptor agonist, guanfacine, greatly improves working-memory performance in monkeys and rats following systemic administration or intra-PFC infusion. Alpha2A-adrenoceptors are generally coupled to Gi, which can inhibit adenylyl cyclases and reduce the production of cAMP. However, no study has directly examined whether the working-memory enhancement observed with guanfacine or other alpha2A-adrenoceptor agonists results from cAMP inhibition. The current study confirmed this hypothesis in both rats and monkeys, showing that treatments that increase cAMP-mediated signaling block guanfacine's beneficial effects. In aged rats, guanfacine was infused directly into the prelimbic PFC and was challenged with co-infusions of the cAMP analog, Sp-cAMPS. In aging monkeys, systemically administered guanfacine was challenged with the phosphodiesterase 4 inhibitor, rolipram, using intramuscular doses known to have no effect on their own. In both studies, agents that mimicked the actions of cAMP (rats) or increased endogenous cAMP (monkeys) completely blocked the enhancing effects of guanfacine on working-memory performance. These results are consistent with alpha2A-adrenoceptor stimulation enhancing PFC working-memory function via inhibition of cAMP-mediated signaling.


Asunto(s)
Envejecimiento/metabolismo , AMP Cíclico/metabolismo , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Transducción de Señal/fisiología , Agonistas alfa-Adrenérgicos/farmacología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Guanfacina/farmacología , Macaca mulatta , Memoria a Corto Plazo/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 2/efectos de los fármacos , Sistemas de Mensajero Secundario/fisiología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA