Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Environ Manage ; 322: 116055, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36041303

RESUMEN

The conventional hydrometallurgical methods for recycling refinery spent hydroprocessing catalysts are ineffective in simultaneously removing all metals (Ni, V, and Mo) in a single-stage operation. In this study, a novel octadentate chelating agent, diethylenetriaminepentaacetic acid (DTPA-C14H23N3O10), has been proposed for the first time to remove toxic metals (Ni, V, and Mo) in a single stage of operation from an industrial spent atmospheric residue desulfurization (ARDS) catalysts. It was discovered that the efficient formation of metal-DTPA complexes was attained under the optimum experimental conditions (60 °C, stirring - 150 rpm, S/L ration (w/v) of 2.5%, 7.5% DTPA, and medium pH-9) that resulted in the high removal of Mo (83.6%), V (81.3%) and Ni (64.1%) from the spent ARDS catalyst. Kinetic studies suggest that the leaching process followed a semi-empirical Avrami equation (R2 > 0.92), which predicted that the diffusion control reaction controlled the leaching. Species distribution and ecological risk analysis of the remaining metals in the insoluble residue (mostly Al2O3) indicated that the potential bioavailability of the remaining metals (except Ni) was significantly decreased, and residue poses a low ecological and contamination risk (individual contamination factor <1). Furthermore, the textural properties of the residue (BET surface area-103 m2/g and pore volume- 0.49 ml/g) were dramatically improved, suggesting that fresh hydroprocessing catalyst support can be synthesized using the leached residue. Compared to the conventional processes, the proposed chelating process is highly selective, closed-loop, and achieved high metal recovery in a single-stage operation while decreasing the environmental risks of the hazardous spent catalysts.


Asunto(s)
Petróleo , Síndrome de Dificultad Respiratoria , Catálisis , Quelantes , Descontaminación , Humanos , Cinética , Metales/química , Ácido Pentético , Reciclaje
2.
Artículo en Inglés | MEDLINE | ID: mdl-29775124

RESUMEN

The present study aims to develop an eco-friendly methodology for the recovery of nickel (Ni), molybdenum (Mo), and vanadium (V) from the refinery waste spent hydroprocessing catalyst. The proposed process has two stages: the first stage is to separate alumina, while the second stage involves the separation of metal compounds. The effectiveness of leaching agents, such as NH4OH, (NH4)2CO3, and (NH4)2S2O8, for the extraction of Mo, V, Ni, and Al from the refinery spent catalyst has been reported as a function of reagent concentration (0.5 to 2.0 molar), leaching time (1 to 6 h), and temperature (35 to 60°C). The optimal leaching conditions were achieved to obtain the maximum recovery of Mo, Ni, and V metals. The effect of the mixture of multi-ammonium salts on the metal extraction was also studied, which showed an adverse effect for Ni and V, while marginal improvement was observed for Mo leaching. The ammonium salts can form soluble metal complexes, in which stability or solubility depends on the nature of ammonium salt and the reaction conditions. The extracted metals and support can be reused to synthesize a fresh hydroprocessing catalyst. The process will reduce the refinery waste and recover the expensive metals. Therefore, the process is not only important from an environmental point of view but also vital from an economic perspective.


Asunto(s)
Residuos Industriales , Metales/análisis , Industria del Petróleo y Gas , Eliminación de Residuos , Contaminantes Químicos del Agua/análisis , Óxido de Aluminio/análisis , Catálisis , Hidrólisis , Residuos Industriales/efectos adversos , Kuwait , Molibdeno/análisis , Níquel/análisis , Industria del Petróleo y Gas/instrumentación , Industria del Petróleo y Gas/métodos , Eliminación de Residuos/instrumentación , Eliminación de Residuos/métodos , Eliminación de Residuos/normas , Vanadio/análisis
3.
Environ Sci Pollut Res Int ; 31(11): 17339-17353, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38337119

RESUMEN

Petroleum spent hydroprocessing catalysts are hazardous solid waste, the efficient recycling of which is a serious challenge to refineries. However, information on the economic feasibility of spent catalysts recycling plants is scarce, which is critical for environmental authorities and decision-makers. In this work, an innovative recycling scheme targeting hydrometallurgical recovery of base metals (Ni, Mo, and V) and transforming low-value Al residue into a high-value boehmite (γ-AlOOH) as the key product was considered an efficient way to beneficiate the hazardous spent hydroprocessing catalysts. A preliminary techno-economic evaluation of such a recycling scheme was performed to assess the feasibility of the proposed recycling scheme. The recovery cost (valuable metals and boehmite) and potential revenue were estimated to study the economics of the process. The preliminary results have suggested that the recycling scheme is economically feasible with a high internal rate of return (IRR) of 12.3%, a net present value of 38.6 million USD, and a short payback period of 8.7 years. Furthermore, a sensitivity analysis (± 10%) conducted on key parameters showed that the selling prices of the finished products and the cost of chemicals were the most important factors affecting plant economics. Overall, the recycling scheme was sustainable and avoided landfilling of spent catalysts as the residue can be beneficiated into a high-value product. The results from the economic feasibility study are likely to assist the stakeholders and decision-makers in making investment and policy decisions for the valorization of spent hydroprocessing catalysts.


Asunto(s)
Hidróxido de Aluminio , Óxido de Aluminio , Petróleo , Estudios de Factibilidad , Metales , Reciclaje/métodos
4.
RSC Adv ; 13(12): 7766-7779, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36909755

RESUMEN

A method for synthesizing graphene derivatives from asphaltene is proposed in this work. The graphene derivatives are mainly composed of few-layer graphene-like nano-sheets of randomly distributed heteroatoms; mainly sulfur and nitrogen. The proposed method is based on a thermal treatment in which asphaltene is carbonized in a rotating quartz-tube furnace under an inert atmosphere at a temperature in the range of 400-950 °C. Asphaltenes from different origins were employed to verify the synthesis method. The results indicate that graphene derivatives obtained at high carbonization temperature have similar structural parameters, despite the evident differences in parent asphaltenes structures and compositions. The transformation of asphaltene to graphene derivatives mainly occurred due to three factors: the reduction in the average number of aromatic layers (n), the expansion in aromatic sheet diameter (L a), and the elimination of alkyl side chains. The reduction in the number of aromatic sheets per stack is primarily ascribed to thermal exfoliation, while the increase in the aromatic sheet diameter is attributed to secondary reactions in the aromatic core of asphaltene. The elimination of side chains, on the other hand, is mainly credited to thermal cracking. The quantification of defect density (L D) in the graphene derivatives suggests an association between defects and heteroatoms presence.

5.
Environ Sci Pollut Res Int ; 29(23): 34288-34301, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35038087

RESUMEN

Bioleaching is considered an eco-friendly technique for leaching metals from spent hydroprocessing catalysts; however, the low bioleaching yield of some valuable metals (Mo and V) is a severe bottleneck to its successful implementation. The present study reported the potential of an integrated bioleaching-chemical oxidation process in improved leaching of valuable metals (Mo and V) from refinery spent hydroprocessing catalysts. The first stage bioleaching of a spent catalyst (coked/decoked) was conducted using sulfur-oxidizing microbes. The results suggested that after 72 h of bioleaching, 85.7% Ni, 86.9% V, and 72.1% Mo were leached out from the coked spent catalyst. Bioleaching yield in decoked spent catalyst was relatively lower (86.8% Ni, 79.8% V, and 59.8% Mo). The low bioleaching yield in the decoked spent catalyst was attributed to metals' presence in stable fractions (residual + oxidizable). After first stage bioleaching, the integration of a second stage chemical oxidation process (1 M H2O2) drastically improved the leaching of Ni, Mo, and V (94.2-100%) from the coked spent catalyst. The improvement was attributed to the high redox potential (1.77 V) of the H2O2, which led to the transformation of low-valence metal sulfides into high-valence metallic ions more conducive to acidic bioleaching. In the decoked spent catalyst, the increment in the leaching yield after second stage chemical oxidation was marginal (<5%). The results suggested that the integrated bioleaching-chemical oxidation process is an effective method for the complete leaching of valuable metals from the coked spent catalyst.


Asunto(s)
Peróxido de Hidrógeno , Metales , Catálisis , Estudios de Factibilidad , Oxidación-Reducción
6.
ACS Omega ; 5(38): 24412-24421, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33015457

RESUMEN

Thermogravimetric analysis (TGA) was employed to investigate the thermal stability of asphaltenes at different environments (inert and oxidizing atmosphere) and identify their refractory nature. TGA and differential scanning calorimetry were carried out at a temperature range of 50-700 °C, for asphaltene samples obtained from atmospheric residues, vacuum residues (VRs), and aromatic petroleum pitch samples, which were obtained from the cracking of VRs at different temperatures. The TGA results clearly indicate that thermal degradation of asphaltene takes place in a single process that starts around 350 °C and ends at 500 °C, giving ash contents of less than 2%. The derivatives of the TGA for the asphaltene samples suggest that the weight loss of composite material took place in two steps. The first step corresponds to the degradation of aliphatic side chains or easily oxidized hydrocarbons, while the second step corresponds to the degradation of the aromatic sheets or the stacked layers. TGA of asphaltenes in oxidizing atmosphere showed considerable changes in heat flow due to the destructive oxidation of the asphaltene molecular structure. The thermal stability or refractory nature of these asphaltenes have been calculated as heat of energy or enthalpy of the molecule, which corresponds to the π-π interaction between the aromatic ring, hydrogen bonding, and alkyl chain size of the asphaltene molecule.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA