Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nucleic Acids Res ; 50(3): e18, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34850106

RESUMEN

Information about the cellular concentrations of deoxyribonucleoside triphosphates (dNTPs) is instrumental for mechanistic studies of DNA replication and for understanding diseases caused by defects in dNTP metabolism. The dNTPs are measured by methods based on either HPLC or DNA polymerization. An advantage with the HPLC-based techniques is that the parallel analysis of ribonucleoside triphosphates (rNTPs) can serve as an internal quality control of nucleotide integrity and extraction efficiency. We have developed a Freon-free trichloroacetic acid-based method to extract cellular nucleotides and an isocratic reverse phase HPLC-based technique that is able to separate dNTPs, rNTPs and ADP in a single run. The ability to measure the ADP levels improves the control of nucleotide integrity, and the use of an isocratic elution overcomes the shifting baseline problems in previously developed gradient-based reversed phase protocols for simultaneously measuring dNTPs and rNTPs. An optional DNA-polymerase-dependent step is used for confirmation that the dNTP peaks do not overlap with other components of the extracts, further increasing the reliability of the analysis. The method is compatible with a wide range of biological samples and has a sensitivity better than other UV-based HPLC protocols, closely matching that of mass spectrometry-based detection.


Asunto(s)
Cromatografía Líquida de Alta Presión , Desoxirribonucleótidos , Ribonucleótidos/análisis , Adenosina Difosfato , Cromatografía Líquida de Alta Presión/métodos , ADN , Desoxirribonucleótidos/análisis , Reproducibilidad de los Resultados
2.
J Biol Chem ; 298(6): 102028, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35568200

RESUMEN

Giardiasis is a diarrheal disease caused by the unicellular parasite Giardia intestinalis, for which metronidazole is the main treatment option. The parasite is dependent on exogenous deoxyribonucleosides for DNA replication and thus is also potentially vulnerable to deoxyribonucleoside analogs. Here, we characterized the G. intestinalis thymidine kinase, a divergent member of the thymidine kinase 1 family that consists of two weakly homologous parts within one polypeptide. We found that the recombinantly expressed enzyme is monomeric, with 100-fold higher catalytic efficiency for thymidine compared to its second-best substrate, deoxyuridine, and is furthermore subject to feedback inhibition by dTTP. This efficient substrate discrimination is in line with the lack of thymidylate synthase and dUTPase in the parasite, which makes deoxy-UMP a dead-end product that is potentially harmful if converted to deoxy-UTP. We also found that the antiretroviral drug azidothymidine (AZT) was an equally good substrate as thymidine and was active against WT as well as metronidazole-resistant G. intestinalis trophozoites. This drug inhibited DNA synthesis in the parasite and efficiently decreased cyst production in vitro, which suggests that it could reduce infectivity. AZT also showed a good effect in G. intestinalis-infected gerbils, reducing both the number of trophozoites in the small intestine and the number of viable cysts in the stool. Taken together, these results suggest that the absolute dependency of the parasite on thymidine kinase for its DNA synthesis can be exploited by AZT, which has promise as a future medication effective against metronidazole-refractory giardiasis.


Asunto(s)
Replicación del ADN , Giardia lamblia , Proteínas Protozoarias , Timidina Quinasa , Zidovudina , Animales , Descubrimiento de Drogas , Gerbillinae , Giardia lamblia/enzimología , Giardia lamblia/genética , Giardiasis/tratamiento farmacológico , Metronidazol/uso terapéutico , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Timidina , Timidina Quinasa/antagonistas & inhibidores , Timidina Quinasa/genética , Zidovudina/farmacología
4.
Ecotoxicol Environ Saf ; 156: 154-165, 2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-29549739

RESUMEN

The Apiaceae family encompasses aromatic plants of economic importance employed in foodstuffs, beverages, perfumery, pharmaceuticals and cosmetics. Apiaceae are rich sources of essential oils because of the wealth of secretory structures (ducts and vittae) they are endowed with. The Apiaceae essential oils are available on an industrial level because of the wide cultivation and disposability of the bulky material from which they are extracted as well as their relatively cheap price. In the fight against protozoal infections, essential oils may represent new therapeutic options. In the present work, we focused on a panel of nine Apiaceae species (Siler montanum, Sison amomum, Echinophora spinosa, Kundmannia sicula, Crithmum maritimum, Helosciadium nodiflorum, Pimpinella anisum, Heracleum sphondylium and Trachyspermum ammi) and their essential oils as a model for the identification of trypanocidal compounds to be used as alternative/integrative therapies in the treatment of Human African trypanosomiasis (HAT) and as starting material for drug design. The evaluation of inhibitory effects of the Apiaceae essential oils against Trypanosoma brucei showed that some of them (E. spinosa, S. amomum, C. maritimum and H. nodiflorum) were active, with EC50 in the range 2.7-10.7 µg/mL. Most of these oils were selective against T. brucei, except the one from C. maritimum that was highly selective against the BALB/3T3 mammalian cells. Testing nine characteristic individual components (α-pinene, sabinene, α-phellandrene, p-cymene, limonene, ß-ocimene, γ-terpinene, terpinolene, and myristicin) of these oils, we showed that some of them had much higher selectivity than the oils themselves. Terpinolene was particularly active with an EC50 value of 0.035 µg/mL (0.26 µM) and a selectivity index (SI) of 180. Four other compounds with EC50 in the range 1.0-6.0 µg/mL (7.4-44 µM) had also good SI: α-pinene (>100), ß-ocimene (>91), limonene (>18) and sabinene (>17). In conclusion, these results highlight that the essential oils from the Apiaceae family are a reservoir of substances to be used as leading compounds for the development of natural drugs for the treatment of HAT.


Asunto(s)
Apiaceae/química , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Células 3T3 , Monoterpenos Acíclicos , Alquenos/farmacología , Derivados de Alilbenceno , Animales , Compuestos de Bencilo/farmacología , Monoterpenos Bicíclicos , Monoterpenos Ciclohexánicos , Ciclohexenos/farmacología , Cimenos , Dioxolanos/farmacología , Concentración 50 Inhibidora , Limoneno , Ratones , Monoterpenos/farmacología , Pirogalol/análogos & derivados , Pirogalol/farmacología , Terpenos/farmacología , Tripanosomiasis/tratamiento farmacológico
5.
J Biol Chem ; 291(22): 11717-26, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27036940

RESUMEN

Trypanosoma brucei causes African sleeping sickness for which no vaccine exists and available treatments are of limited use due to their high toxicity or lack of efficacy. T. brucei cultivated in the presence of deoxyadenosine accumulates high levels of dATP in an adenosine kinase-dependent process and dies within a few hours. Here we show that T. brucei treated with 1 mm deoxyadenosine accumulates higher dATP levels than mammalian cells but that this effect diminishes quickly as the concentration of the deoxynucleoside decreases. Radioactive tracer studies showed that the parasites are partially protected against lower concentrations of deoxyadenosine by the ability to cleave it and use the adenine for ATP synthesis. T. brucei methylthioadenosine phosphorylase (TbMTAP) was found to be responsible for the cleavage as indicated by the phosphate dependence of deoxyadenosine cleavage in T. brucei cell extracts and increased deoxyadenosine sensitivity in TbMTAP knockdown cells. Recombinant TbMTAP exhibited higher turnover number (kcat) and Km values for deoxyadenosine than for the regular substrate, methylthioadenosine. One of the reaction products, adenine, inhibited the enzyme, which might explain why TbMTAP-mediated protection is less efficient at higher deoxyadenosine concentrations. Consequently, T. brucei grown in the presence of adenine demonstrated increased sensitivity to deoxyadenosine. For deoxyadenosine/adenosine analogues to remain intact and be active against the parasite, they need to either be resistant to TbMTAP-mediated cleavage, which is the case with the three known antitrypanosomal agents adenine arabinoside, tubercidin, and cordycepin, or they need to be combined with TbMTAP inhibitors.


Asunto(s)
Antimetabolitos/farmacología , Desoxiadenosinas/farmacología , Purina-Nucleósido Fosforilasa/metabolismo , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , Tripanosomiasis Africana/patología , Animales , Células 3T3 BALB , Western Blotting , Perros , Células HL-60 , Humanos , Células de Riñón Canino Madin Darby , Ratones , Trypanosoma brucei brucei/patogenicidad , Tripanosomiasis Africana/parasitología , Tripanosomiasis Africana/prevención & control
6.
Artículo en Inglés | MEDLINE | ID: mdl-28373184

RESUMEN

Current chemotherapy against African sleeping sickness, a disease caused by the protozoan parasite Trypanosoma brucei, is limited by toxicity, inefficacy, and drug resistance. Nucleoside analogues have been successfully used to cure T. brucei-infected mice, but they have the limitation of mainly being taken up by the P2 nucleoside transporter, which, when mutated, is a common cause of multidrug resistance in T. brucei We report here that adenine arabinoside (Ara-A) and the newly tested drug 9-(2'-deoxy-2'-fluoro-ß-d-arabinofuranosyl) adenine (FANA-A) are instead taken up by the P1 nucleoside transporter, which is not associated with drug resistance. Like Ara-A, FANA-A was found to be resistant to cleavage by methylthioadenosine phosphorylase, an enzyme that protects T. brucei against the antitrypanosomal effects of deoxyadenosine. Another important factor behind the selectivity of nucleoside analogues is how well they are phosphorylated within the cell. We found that the T. brucei adenosine kinase had a higher catalytic efficiency with FANA-A than the mammalian enzyme, and T. brucei cells treated with FANA-A accumulated high levels of FANA-A triphosphate, which even surpassed the level of ATP and led to cell cycle arrest, inhibition of DNA synthesis, and the accumulation of DNA breaks. FANA-A inhibited nucleic acid biosynthesis and parasite proliferation with 50% effective concentrations (EC50s) in the low nanomolar range, whereas mammalian cell proliferation was inhibited in the micromolar range. Both Ara-A and FANA-A, in combination with deoxycoformycin, cured T. brucei-infected mice, but FANA-A did so at a dose 100 times lower than that of Ara-A.


Asunto(s)
Adenina/análogos & derivados , Adenosina Quinasa/genética , Animales , Antimetabolitos/farmacología , Antimetabolitos/uso terapéutico , Resistencia a Medicamentos/genética , Ratones , Purina-Nucleósido Fosforilasa/genética , Trypanosoma/efectos de los fármacos , Trypanosoma/metabolismo , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/tratamiento farmacológico
7.
Molecules ; 21(8)2016 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-27529211

RESUMEN

Erigeron floribundus (Asteraceae) is an herbaceous plant widely used in Cameroonian traditional medicine to treat various diseases of microbial and non-microbial origin. In the present study, we evaluated the in vitro biological activities displayed by the essential oil obtained from the aerial parts of E. floribundus, namely the antioxidant, antimicrobial and antiproliferative activities. Moreover, we investigated the inhibitory effects of E. floribundus essential oil on nicotinate mononucleotide adenylyltransferase (NadD), a promising new target for developing novel antibiotics, and Trypanosoma brucei, the protozoan parasite responsible for Human African trypanosomiasis. The essential oil composition was dominated by spathulenol (12.2%), caryophyllene oxide (12.4%) and limonene (8.8%). The E. floribundus oil showed a good activity against Staphylococcus aureus (inhibition zone diameter, IZD of 14 mm, minimum inhibitory concentration, MIC of 512 µg/mL). Interestingly, it inhibited the NadD enzyme from S. aureus (IC50 of 98 µg/mL), with no effects on mammalian orthologue enzymes. In addition, T. brucei proliferation was inhibited with IC50 values of 33.5 µg/mL with the essential oil and 5.6 µg/mL with the active component limonene. The essential oil exhibited strong cytotoxicity on HCT 116 colon carcinoma cells with an IC50 value of 14.89 µg/mL, and remarkable ferric reducing antioxidant power (tocopherol-equivalent antioxidant capacity, TEAC = 411.9 µmol·TE/g).


Asunto(s)
Erigeron/química , Aceites Volátiles/farmacología , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Ratones , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Extractos Vegetales/química , Extractos Vegetales/farmacología
8.
J Biol Chem ; 289(19): 13054-65, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24668817

RESUMEN

The intracellular metabolism and cytostatic activity of the anticancer drug gemcitabine (2',2'-difluoro-2'-deoxycytidine; dFdC) was severely compromised in Mycoplasma hyorhinis-infected tumor cell cultures. Pronounced deamination of dFdC to its less cytostatic metabolite 2',2'-difluoro-2'-deoxyuridine was observed, both in cell extracts and spent culture medium (i.e. tumor cell-free but mycoplasma-containing) of mycoplasma-infected tumor cells. This indicates that the decreased antiproliferative activity of dFdC in such cells is attributed to a mycoplasma cytidine deaminase causing rapid drug catabolism. Indeed, the cytostatic activity of gemcitabine could be restored by the co-administration of tetrahydrouridine (a potent cytidine deaminase inhibitor). Additionally, mycoplasma-derived pyrimidine nucleoside phosphorylase (PyNP) activity indirectly potentiated deamination of dFdC: the natural pyrimidine nucleosides uridine, 2'-deoxyuridine and thymidine inhibited mycoplasma-associated dFdC deamination but were efficiently catabolized (removed) by mycoplasma PyNP. The markedly lower anabolism and related cytostatic activity of dFdC in mycoplasma-infected tumor cells was therefore also (partially) restored by a specific TP/PyNP inhibitor (TPI), or by exogenous thymidine. Consequently, no effect on the cytostatic activity of dFdC was observed in tumor cell cultures infected with a PyNP-deficient Mycoplasma pneumoniae strain. Because it has been reported that some commensal mycoplasma species (including M. hyorhinis) preferentially colonize tumor tissue in cancer patients, our findings suggest that the presence of mycoplasmas in the tumor microenvironment could be a limiting factor for the anticancer efficiency of dFdC-based chemotherapy. Accordingly, a significantly decreased antitumor effect of dFdC was observed in mice bearing M. hyorhinis-infected murine mammary FM3A tumors compared with uninfected tumors.


Asunto(s)
Antimetabolitos Antineoplásicos , Proteínas Bacterianas/metabolismo , Neoplasias de la Mama , Desoxicitidina/análogos & derivados , Neoplasias Mamarias Experimentales , Infecciones por Mycoplasma/enzimología , Mycoplasma hyorhinis/enzimología , Pirimidina Fosforilasas/metabolismo , Animales , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/microbiología , Línea Celular Tumoral , Desoxicitidina/farmacocinética , Desoxicitidina/farmacología , Femenino , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/microbiología , Ratones , Tetrahidrouridina/farmacocinética , Tetrahidrouridina/farmacología , Timidina/metabolismo , Microambiente Tumoral/efectos de los fármacos , Gemcitabina
9.
J Biol Chem ; 287(21): 17628-17636, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22442154

RESUMEN

Trypanosoma brucei causes African sleeping sickness, a disease for which existing chemotherapies are limited by their toxicity or lack of efficacy. We have found that four parasites, including T. brucei, contain genes where two or four thymidine kinase (TK) sequences are fused into a single open reading frame. The T. brucei full-length enzyme as well as its two constituent parts, domain 1 and domain 2, were separately expressed and characterized. Of potential interest for nucleoside analog development, T. brucei TK was less discriminative against purines than human TK1 with the following order of catalytic efficiencies: thymidine > deoxyuridine ≫ deoxyinosine > deoxyguanosine. Proteins from the TK1 family are generally dimers or tetramers, and the quaternary structure is linked to substrate affinity. T. brucei TK was primarily monomeric but can be considered a two-domain pseudodimer. Independent kinetic analysis of the two domains showed that only domain 2 was active. It had a similar turnover number (k(cat)) as the full-length enzyme but could not self-dimerize efficiently and had a 5-fold reduced thymidine/deoxyuridine affinity. Domain 1, which lacks three conserved active site residues, can therefore be considered a covalently attached structural partner that enhances substrate binding to domain 2. A consequence of the non-catalytic role of domain 1 is that its active site residues are released from evolutionary pressure, which can be advantageous for developing new catalytic functions. In addition, nearly identical 89-bp sequences present in both domains suggest that the exchange of genetic material between them can further promote evolution.


Asunto(s)
Evolución Molecular , Nucleótidos/metabolismo , Multimerización de Proteína , Proteínas Protozoarias/metabolismo , Timidina Quinasa/metabolismo , Trypanosoma brucei brucei/enzimología , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Nucleótidos/química , Nucleótidos/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Especificidad por Sustrato , Timidina Quinasa/química , Timidina Quinasa/genética , Trypanosoma brucei brucei/genética
10.
Antibiotics (Basel) ; 10(11)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34827351

RESUMEN

This study aimed to investigate the susceptibility of Trypanosoma brucei to the Anthriscus nemorosa essential oils (EOs), isolated compounds from these oils, and artificial mixtures of the isolated compounds in their conventional and nanoencapsulated forms. The chemical composition of the essential oils from the aerial parts and roots of Anthriscus nemorosa, obtained from a wild population growing in central Italy, were analyzed by gas chromatography/mass spectrometry (GC/MS). In both cases, the predominant class of compounds was monoterpene hydrocarbons, which were more abundant in the EOs from the roots (81.5%) than the aerial parts (74.0%). The overall results of this work have shed light on the biological properties of A. nemorosa EO from aerial parts (EC50 = 1.17 µg/mL), farnesene (EC50 = 0.84 µg/mL), and artificial mixtures (Mix 3-5, EC50 in the range of 1.27 to 1.58 µg/mL) as relevant sources of antiprotozoal substances. Furthermore, the pool measurements of ADP (adenosine diphosphate) and NTPs (nucleoside triphosphates) in the cultivated bloodstream form of trypanosomes exposed to different concentrations of EOs showed a disturbed energy metabolism, as indicated by increased pools of ADP in comparison to ATP (adenosine triphosphate) and other NTPs. Ultimately, this study highlights the significant efficacy of A. nemorosa EO to develop long-lasting and effective antiprotozoal formulations, including nanoemulsions.

11.
Fitoterapia ; 124: 145-151, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29146170

RESUMEN

Tithonia diversifolia (Asteraceae), is used as traditional medicine in tropical countries for the treatment of various diseases, including malaria. Although numerous studies have assessed the antimalarial properties, nothing is known about the effect of T. diversifolia extracts on trypanosomiasis. In this study extracts of T. diversifolia aerial parts were evaluated for their bioactivity against Trypanosoma brucei. The activity was studied against bloodstream forms of T. brucei (TC221), as well as against mammalian cells (BALB/3T3 mouse fibroblasts), as a counter-screen for toxicity. Both methanolic and aqueous extracts showed significant effects with IC50 values of 1.1 and 2.2µg/mL against T. brucei (TC221) and 5.2 and 3.7µg/mL against BALB/3T3 cells, respectively. A bioassay-guided fractionation on the methanolic extract yielded in identification of active fractions (F8 and F9) with IC50 values of 0.41 and 0.43µg/mL, respectively, against T. brucei (TC221) and 1.4 and 1.5µg/mL, respectively, against BALB/3T3 cells,. The phytochemical composition of the extracts and the purified fractions were investigated using HPLC-ESI-MS/MS and 1D and 2D NMR spectra showing the presence of sesquiterpene lactones that in turn were subjected to the isolation procedure. Tagitinin A and C were rather active but the latter presented a very strong inhibition on T. brucei (TC221) with an IC50 value of 0.0042µg/mL. This activity was 4.5 times better than that of the reference drug suramin. The results of this study shed light on the antitrypanosomal effects of T. diversifolia extracts and highlighted tagitinin C as one of the possible responsible for this effect. Further structure activity relationships studies on tagitinins are needed to consider this sesquiterpenes as lead compounds for the development of new antitrypanosomal drugs.


Asunto(s)
Antimaláricos/farmacología , Asteraceae/química , Extractos Vegetales/farmacología , Sesquiterpenos/farmacología , Animales , Antimaláricos/aislamiento & purificación , Células 3T3 BALB , Ratones , Hojas de la Planta/química , Sesquiterpenos/aislamiento & purificación , Trypanosoma brucei brucei/efectos de los fármacos
12.
Parasitol Int ; 66(2): 146-151, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28087440

RESUMEN

Among natural products, sesquiterpenes have shown promising inhibitory effects against bloodstream forms of Trypanosoma brucei, the protozoan parasite causing human African trypanosomiasis (HAT). Smyrnium olusatrum (Apiaceae), also known as Alexanders or wild celery, is a neglected horticultural crop characterized by oxygenated sesquiterpenes containing a furan ring. In the present work we explored the potential of its essential oils obtained from different organs and the main oxygenated sesquiterpenes, namely isofuranodiene, germacrone and ß-acetoxyfuranoeudesm-4(15)-ene, as inhibitors of Trypanosoma brucei. All essential oils effectively inhibited the growth of parasite showing IC50 values of 1.9-4.0µg/ml. Among the main essential oil constituents, isofuranodiene exhibited a significant and selective inhibitory activity against T. brucei (IC50 of 0.6µg/ml, SI=30), with ß-acetoxyfuranoeudesm-4(15)-ene giving a moderate potentiating effect. These results shed light on the possible application of isofuranodiene as an antiprotozoal agent to be included in combination treatments aimed not only at curing patients but also at preventing the diffusion of HAT.


Asunto(s)
Apiaceae/química , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Animales , Células 3T3 BALB , Flores/química , Frutas/química , Furanos/aislamiento & purificación , Furanos/farmacología , Humanos , Concentración 50 Inhibidora , Ratones , Aceites Volátiles/química , Hojas de la Planta/química , Aceites de Plantas/química , Raíces de Plantas/química , Sesquiterpenos de Germacrano/farmacología , Tripanocidas/química , Tripanocidas/aislamiento & purificación , Trypanosoma brucei brucei/crecimiento & desarrollo , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología
13.
Artículo en Inglés | MEDLINE | ID: mdl-28684709

RESUMEN

Essential oils are complex mixtures of volatile components produced by the plant secondary metabolism and consist mainly of monoterpenes and sesquiterpenes and, to a minor extent, of aromatic and aliphatic compounds. They are exploited in several fields such as perfumery, food, pharmaceutics, and cosmetics. Essential oils have long-standing uses in the treatment of infectious diseases and parasitosis in humans and animals. In this regard, their therapeutic potential against human African trypanosomiasis (HAT) has not been fully explored. In the present work, we have selected six medicinal and aromatic plants (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea, and Echinops giganteus) traditionally used in Cameroon to treat several disorders, including infections and parasitic diseases, and evaluated the activity of their essential oils against Trypanosma brucei TC221. Their selectivity was also determined with Balb/3T3 (mouse embryonic fibroblast cell line) cells as a reference. The results showed that the essential oils from A. indica, A. daniellii, and E. giganteus were the most active ones, with half maximal inhibitory concentration (IC50) values of 15.21, 7.65, and 10.50 µg/mL, respectively. These essential oils were characterized by different chemical compounds such as sesquiterpene hydrocarbons, monoterpene hydrocarbons, and oxygenated sesquiterpenes. Some of their main components were assayed as well on T. brucei TC221, and their effects were linked to those of essential oils.


Asunto(s)
Magnoliopsida , Aceites Volátiles/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Animales , Células 3T3 BALB , Camerún , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Monoterpenos/análisis , Aceites Volátiles/química , Plantas Medicinales , Sesquiterpenos/análisis , Trypanosoma brucei brucei/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA