Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Magn Reson Med ; 90(6): 2420-2431, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37526031

RESUMEN

PURPOSE: The underlying functional and microstructural lung disease in neonates who are born preterm (bronchopulmonary dysplasia, BPD) remains poorly characterized. Moreover, there is a lack of suitable techniques to reliably assess lung function in this population. Here, we report our preliminary experience with hyperpolarized 129 Xe MRI in neonates with BPD. METHODS: Neonatal intensive care patients with established BPD were recruited (N = 9) and imaged at a corrected gestational age of median:40.7 (range:37.1, 44.4) wk using a 1.5T neonatal scanner. 2D 129 Xe ventilation and diffusion-weighted images and dissolved phase spectroscopy were acquired, alongside 1 H 3D radial UTE. 129 Xe images were acquired during a series of short apneic breath-holds (˜3 s). 1 H UTE images were acquired during tidal breathing. Ventilation defects were manually identified and qualitatively compared to lung structures on UTE. ADCs were calculated on a voxel-wise basis. The signal ratio of the 129 Xe red blood cell (RBC) and tissue membrane (M) resonances from spectroscopy was determined. RESULTS: Spiral-based 129 Xe ventilation imaging showed good image quality and sufficient sensitivity to detect mild ventilation abnormalities in patients with BPD. 129 Xe ADC values were elevated above that expected given healthy data in older children and adults (median:0.046 [range:0.041, 0.064] cm2 s-1 ); the highest value obtained from an extremely pre-term patient. 129 Xe spectroscopy revealed a low RBC/M ratio (0.14 [0.06, 0.21]). CONCLUSION: We have demonstrated initial feasibility of 129 Xe lung MRI in neonates. With further data, the technique may help guide management of infant lung diseases in the neonatal period and beyond.


Asunto(s)
Displasia Broncopulmonar , Adulto , Recién Nacido , Niño , Humanos , Displasia Broncopulmonar/diagnóstico por imagen , Estudios de Factibilidad , Isótopos de Xenón , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
2.
Magn Reson Med ; 88(1): 83-105, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35253919

RESUMEN

Hyperpolarized (HP) xenon-129 (129 Xe) brain MRI is a promising imaging modality currently under extensive development. HP 129 Xe is nontoxic, capable of dissolving in pulmonary blood, and is extremely sensitive to the local environment. After dissolution in the pulmonary blood, HP 129 Xe travels with the blood flow to the brain and can be used for functional imaging such as perfusion imaging, hemodynamic response detection, and blood-brain barrier permeability assessment. HP 129 Xe MRI imaging of the brain has been performed in animals, healthy human subjects, and in patients with Alzheimer's disease and stroke. In this review, the overall progress in the field of HP 129 Xe brain imaging is discussed, along with various imaging approaches and pulse sequences used to optimize HP 129 Xe brain MRI. In addition, current challenges and limitations of HP 129 Xe brain imaging are discussed, as well as possible methods for their mitigation. Finally, potential pathways for further development are also discussed. HP 129 Xe MRI of the brain has the potential to become a valuable novel perfusion imaging technique and has the potential to be used in the clinical setting in the future.


Asunto(s)
Pulmón , Isótopos de Xenón , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Isótopos de Xenón/metabolismo
3.
Magn Reson Med ; 85(6): 2939-2949, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33458859

RESUMEN

PURPOSE: This study develops a tracer kinetic model of xenon uptake in the human brain to determine the transfer rate of inhaled hyperpolarized 129 Xe from cerebral blood to gray matter that accounts for the effects of cerebral physiology, perfusion and magnetization dynamics. The 129 Xe transfer rate is expressed using a tracer transfer coefficient, which estimates the quantity of hyperpolarized 129 Xe dissolved in cerebral blood under exchange with depolarized 129 Xe dissolved in gray matter under equilibrium of concentration. THEORY AND METHODS: Time-resolved MR spectra of hyperpolarized 129 Xe dissolved in the human brain were acquired from three healthy volunteers. Acquired spectra were numerically fitted with five Lorentzian peaks in accordance with known 129 Xe brain spectral peaks. The signal dynamics of spectral peaks for gray matter and red blood cells were quantified, and correction for the 129 Xe T1 dependence upon blood oxygenation was applied. 129 Xe transfer dynamics determined from the ratio of the peaks for gray matter and red blood cells was numerically fitted with the developed tracer kinetic model. RESULTS: For all the acquired NMR spectra, the developed tracer kinetic model fitted the data with tracer transfer coefficients between 0.1 and 0.14. CONCLUSION: In this study, a tracer kinetic model was developed and validated that estimates the transfer rate of HP 129 Xe from cerebral blood to gray matter in the human brain.


Asunto(s)
Barrera Hematoencefálica , Isótopos de Xenón , Barrera Hematoencefálica/diagnóstico por imagen , Humanos , Pulmón , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Xenón
4.
Radiology ; 286(2): 659-665, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28858563

RESUMEN

Purpose To evaluate the feasibility of directly imaging perfusion of human brain tissue by using magnetic resonance (MR) imaging with inhaled hyperpolarized xenon 129 (129Xe). Materials and Methods In vivo imaging with 129Xe was performed in three healthy participants. The combination of a high-yield spin-exchange optical pumping 129Xe polarizer, custom-built radiofrequency coils, and an optimized gradient-echo MR imaging protocol was used to achieve signal sensitivity sufficient to directly image hyperpolarized 129Xe dissolved in the human brain. Conventional T1-weighted proton (hydrogen 1 [1H]) images and perfusion images by using arterial spin labeling were obtained for comparison. Results Images of 129Xe uptake were obtained with a signal-to-noise ratio of 31 ± 9 and demonstrated structural similarities to the gray matter distribution on conventional T1-weighted 1H images and to perfusion images from arterial spin labeling. Conclusion Hyperpolarized 129Xe MR imaging is an injection-free means of imaging the perfusion of cerebral tissue. The proposed method images the uptake of inhaled xenon gas to the extravascular brain tissue compartment across the intact blood-brain barrier. This level of sensitivity is not readily available with contemporary MR imaging methods. ©RSNA, 2017.


Asunto(s)
Encéfalo/irrigación sanguínea , Medios de Contraste/administración & dosificación , Isótopos de Xenón/administración & dosificación , Administración por Inhalación , Adulto , Estudios de Factibilidad , Voluntarios Sanos , Humanos , Angiografía por Resonancia Magnética , Masculino , Oxígeno/sangre
6.
Chest ; 164(3): 700-716, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36965765

RESUMEN

BACKGROUND: Microvascular abnormalities and impaired gas transfer have been observed in patients with COVID-19. The progression of pulmonary changes in these patients remains unclear. RESEARCH QUESTION: Do patients hospitalized with COVID-19 without evidence of architectural distortion on structural imaging exhibit longitudinal improvements in lung function measured by using 1H and 129Xe MRI between 6 and 52 weeks following hospitalization? STUDY DESIGN AND METHODS: Patients who were hospitalized with COVID-19 pneumonia underwent a pulmonary 1H and 129Xe MRI protocol at 6, 12, 25, and 51 weeks following hospital admission in a prospective cohort study between November 2020 and February 2022. The imaging protocol was as follows: 1H ultra-short echo time, contrast-enhanced lung perfusion, 129Xe ventilation, 129Xe diffusion-weighted, and 129Xe spectroscopic imaging of gas exchange. RESULTS: Nine patients were recruited (age 57 ± 14 [median ± interquartile range] years; six of nine patients were male). Patients underwent MRI at 6 (n = 9), 12 (n = 9), 25 (n = 6), and 51 (n = 8) weeks following hospital admission. Patients with signs of interstitial lung damage were excluded. At 6 weeks, patients exhibited impaired 129Xe gas transfer (RBC to membrane fraction), but lung microstructure was not increased (apparent diffusion coefficient and mean acinar airway dimensions). Minor ventilation abnormalities present in four patients were largely resolved in the 6- to 25-week period. At 12 weeks, all patients with lung perfusion data (n = 6) showed an increase in both pulmonary blood volume and flow compared with 6 weeks, although this was not statistically significant. At 12 weeks, significant improvements in 129Xe gas transfer were observed compared with 6-week examinations; however, 129Xe gas transfer remained abnormally low at weeks 12, 25, and 51. INTERPRETATION: 129Xe gas transfer was impaired up to 1 year following hospitalization in patients who were hospitalized with COVID-19 pneumonia, without evidence of architectural distortion on structural imaging, whereas lung ventilation was normal at 52 weeks.


Asunto(s)
COVID-19 , Isótopos de Xenón , Humanos , Masculino , Adulto , Persona de Mediana Edad , Anciano , Femenino , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Pulmón/diagnóstico por imagen
7.
J Appl Physiol (1985) ; 125(5): 1526-1535, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30161004

RESUMEN

Two magnetic resonance specific ventilation imaging (SVI) techniques, namely, oxygen-enhanced proton (OE-1H) and hyperpolarized 3He (HP-3He), were compared in eight healthy supine subjects [age 32 (6) yr]. An in-house radio frequency coil array for 1H configured with the 3He transmit-receive coil in situ enabled acquisition of SVI data from two nuclei from the same slice without repositioning the subjects. After 3 × 3 voxel downsampling to account for spatial registration errors between the two SV images, the voxel-by-voxel correlation coefficient of two SV maps ranged from 0.11 to 0.63 [0.46 mean (0.17 SD); P < 0.05]. Several indexes were analyzed and compared from the tidal volume-matched SV maps: the mean of SV log-normal distribution (SVmean), the standard deviation of the distribution as a measure of SV heterogeneity (SVwidth), and the gravitational gradient (SVslope). There were no significant differences in SVmean [OE-1H: 0.28 (0.08) and HP-3He: 0.32 (0.14)], SVwidths [OE-1H: 0.28 (0.08) and HP-3He: 0.27 (0.10)], and SVslopes [OE-1H: -0.016 (0.006) cm-1 and HP-3He: -0.013 (0.007) cm-1]. Despite the statistical similarities of the population averages, Bland-Altman analysis demonstrated large individual intertechnique variability. SDs of differences in these indexes were 42% (SVmean), 46% (SVwidths), and 62% (SVslopes) of their corresponding overall mean values. The present study showed that two independent, spatially coregistered, SVI techniques presented a moderate positive voxel-by-voxel correlation. Population averages of SVmean, SVwidth, and SVslope were in close agreement. However, the lack of agreement when the data sets were analyzed individually might indicate some fundamental mechanistic differences between the techniques. NEW & NOTEWORTHY To the best of our knowledge, this is the first cross-comparison of two different specific ventilation (SV) MRI techniques in the human lung (i.e., oxygen-enhanced proton and hyperpolarized 3He). The present study showed that two types of spatially coregistered SV images presented a modest positive correlation. The two techniques also yielded similar population averages of SV indexes such as log-normal mean, SV heterogeneity, and the gravitational slope, albeit with some intersubject variability.


Asunto(s)
Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Respiración , Adulto , Femenino , Voluntarios Sanos , Humanos , Pulmón/fisiología , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA