Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Neurosci ; 59(11): 2955-2966, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38453679

RESUMEN

The initial phase of multiple sclerosis (MS), often known as clinically isolated syndrome (CIS), is a critical period for identifying individuals at high risk of progressing to full-blown MS and initiating timely treatment. In this study, we aimed to evaluate the prognostic value of C-X-C motif chemokine ligand 13 (CXCL13) and interleukin-8 (IL-8) as potential markers for CIS patients' conversion to MS. Our study encompassed patients with CIS, those with relapsing-remitting MS (RRMS), and control subjects, with sample analysis conducted on both cerebrospinal fluid (CSF) and serum. Patients were categorized into four groups: CIS-CIS (no MS development within 2 years), CIS-RRMS (conversion to RRMS within 2 years), RRMS (already diagnosed), and a control group (CG) with noninflammatory central nervous system disorders. Results showed significantly elevated levels of CXCL13 in CSF across all patient groups compared with the CG (p < 0.0001, Kruskal-Wallis test). Although CXCL13 concentrations were slightly higher in the CIS-RRMS group, statistical significance was not reached. Similarly, significantly higher levels of IL-8 were detected in CSF samples from all patient groups compared with the CG (p < 0.0001, Kruskal-Wallis test). Receiver operating characteristic analysis in the CIS-RRMS group identified both CXCL13 (area under receiver operating characteristic curve = .959) and IL-8 (area under receiver operating characteristic curve = .939) in CSF as significant predictors of CIS to RRMS conversion. In conclusion, our study suggests a trend towards elevated CSF IL-8 and CSF CXCL13 levels in CIS patients progressing to RRMS. These findings emphasize the importance of identifying prognostic markers to guide appropriate treatment strategies for individuals in the early stages of MS.


Asunto(s)
Quimiocina CXCL13 , Progresión de la Enfermedad , Interleucina-8 , Esclerosis Múltiple Recurrente-Remitente , Humanos , Quimiocina CXCL13/líquido cefalorraquídeo , Quimiocina CXCL13/sangre , Interleucina-8/líquido cefalorraquídeo , Interleucina-8/sangre , Femenino , Masculino , Adulto , Pronóstico , Esclerosis Múltiple Recurrente-Remitente/líquido cefalorraquídeo , Esclerosis Múltiple Recurrente-Remitente/sangre , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/sangre , Persona de Mediana Edad , Enfermedades Desmielinizantes/líquido cefalorraquídeo , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/sangre , Esclerosis Múltiple/diagnóstico , Adulto Joven
2.
J Transl Med ; 22(1): 426, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711085

RESUMEN

BACKGROUND: Programmed cell death 1 (PD-1) belongs to immune checkpoint proteins ensuring negative regulation of the immune response. In non-small cell lung cancer (NSCLC), the sensitivity to treatment with anti-PD-1 therapeutics, and its efficacy, mostly correlated with the increase of tumor infiltrating PD-1+ lymphocytes. Due to solid tumor heterogeneity of PD-1+ populations, novel low molecular weight anti-PD-1 high-affinity diagnostic probes can increase the reliability of expression profiling of PD-1+ tumor infiltrating lymphocytes (TILs) in tumor tissue biopsies and in vivo mapping efficiency using immune-PET imaging. METHODS: We designed a 13 kDa ß-sheet Myomedin scaffold combinatorial library by randomization of 12 mutable residues, and in combination with ribosome display, we identified anti-PD-1 Myomedin variants (MBA ligands) that specifically bound to human and murine PD-1-transfected HEK293T cells and human SUP-T1 cells spontaneously overexpressing cell surface PD-1. RESULTS: Binding affinity to cell-surface expressed human and murine PD-1 on transfected HEK293T cells was measured by fluorescence with LigandTracer and resulted in the selection of most promising variants MBA066 (hPD-1 KD = 6.9 nM; mPD-1 KD = 40.5 nM), MBA197 (hPD-1 KD = 29.7 nM; mPD-1 KD = 21.4 nM) and MBA414 (hPD-1 KD = 8.6 nM; mPD-1 KD = 2.4 nM). The potential of MBA proteins for imaging of PD-1+ populations in vivo was demonstrated using deferoxamine-conjugated MBA labeled with 68Galium isotope. Radiochemical purity of 68Ga-MBA proteins reached values 94.7-99.3% and in vitro stability in human serum after 120 min was in the range 94.6-98.2%. The distribution of 68Ga-MBA proteins in mice was monitored using whole-body positron emission tomography combined with computerized tomography (PET/CT) imaging up to 90 min post-injection and post mortem examined in 12 mouse organs. The specificity of MBA proteins was proven by co-staining frozen sections of human tonsils and NSCLC tissue biopsies with anti-PD-1 antibody, and demonstrated their potential for mapping PD-1+ populations in solid tumors. CONCLUSIONS: Using directed evolution, we developed a unique set of small binding proteins that can improve PD-1 diagnostics in vitro as well as in vivo using PET/CT imaging.


Asunto(s)
Tomografía de Emisión de Positrones , Receptor de Muerte Celular Programada 1 , Ingeniería de Proteínas , Humanos , Receptor de Muerte Celular Programada 1/metabolismo , Animales , Tomografía de Emisión de Positrones/métodos , Células HEK293 , Ratones , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Secuencia de Aminoácidos
3.
Cell Commun Signal ; 22(1): 261, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715108

RESUMEN

BACKGROUND: Interleukin-6 (IL-6) is a multifunctional cytokine that controls the immune response, and its role has been described in the development of autoimmune diseases. Signaling via its cognate IL-6 receptor (IL-6R) complex is critical in tumor progression and, therefore, IL-6R represents an important therapeutic target. METHODS: An albumin-binding domain-derived highly complex combinatorial library was used to select IL-6R alpha (IL-6Rα)-targeted small protein binders using ribosome display. Large-scale screening of bacterial lysates of individual clones was performed using ELISA, and their IL-6Rα blocking potential was verified by competition ELISA. The binding of proteins to cells was monitored by flow cytometry and confocal microscopy on HEK293T-transfected cells, and inhibition of signaling function was examined using HEK-Blue IL-6 reporter cells. Protein binding kinetics to living cells was measured by LigandTracer, cell proliferation and toxicity by iCELLigence and Incucyte, cell migration by the scratch wound healing assay, and prediction of binding poses using molecular modeling by docking. RESULTS: We demonstrated a collection of protein variants called NEF ligands, selected from an albumin-binding domain scaffold-derived combinatorial library, and showed their binding specificity to human IL-6Rα and antagonistic effect in HEK-Blue IL-6 reporter cells. The three most promising NEF108, NEF163, and NEF172 variants inhibited cell proliferation of malignant melanoma (G361 and A2058) and pancreatic (PaTu and MiaPaCa) cancer cells, and suppressed migration of malignant melanoma (A2058), pancreatic carcinoma (PaTu), and glioblastoma (GAMG) cells in vitro. The NEF binders also recognized maturation-induced IL-6Rα expression and interfered with IL-6-induced differentiation in primary human B cells. CONCLUSION: We report on the generation of small protein blockers of human IL-6Rα using directed evolution. NEF proteins represent a promising class of non-toxic anti-tumor agents with migrastatic potential.


Asunto(s)
Movimiento Celular , Proliferación Celular , Receptores de Interleucina-6 , Humanos , Proliferación Celular/efectos de los fármacos , Receptores de Interleucina-6/metabolismo , Movimiento Celular/efectos de los fármacos , Células HEK293 , Línea Celular Tumoral , Unión Proteica/efectos de los fármacos
4.
J Am Soc Nephrol ; 33(5): 908-917, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35115327

RESUMEN

BACKGROUND: IgA nephropathy (IgAN) primary glomerulonephritis is characterized by the deposition of circulating immune complexes composed of polymeric IgA1 molecules with altered O-glycans (Gd-IgA1) and anti-glycan antibodies in the kidney mesangium. The mesangial IgA deposits and serum IgA1 contain predominantly λ light (L) chains, but the nature and origin of such IgA remains enigmatic. METHODS: We analyzed λ L chain expression in peripheral blood B cells of 30 IgAN patients, 30 healthy controls (HCs), and 18 membranous nephropathy patients selected as disease controls (non-IgAN). RESULTS: In comparison to HCs and non-IgAN patients, peripheral blood surface/membrane bound (mb)-Gd-IgA1+ cells from IgAN patients express predominantly λ L chains. In contrast, total mb-IgA+, mb-IgG+, and mb-IgM+ cells were preferentially positive for kappa (κ) L chains, in all analyzed groups. Although minor in comparison to κ L chains, λ L chain subsets of mb-IgG+, mb-IgM+, and mb-IgA+ cells were significantly enriched in IgAN patients in comparison to non-IgAN patients and/or HCs. In contrast to HCs, the peripheral blood of IgAN patients was enriched with λ+ mb-Gd-IgA1+, CCR10+, and CCR9+ cells, which preferentially home to the upper respiratory and digestive tracts. Furthermore, we observed that mb-Gd-IgA1+ cell populations comprise more CD138+ cells and plasmablasts (CD38+) in comparison to total mb-IgA+ cells. CONCLUSIONS: Peripheral blood of IgAN patients is enriched with migratory λ+ mb-Gd-IgA1+ B cells, with the potential to home to mucosal sites where Gd-IgA1 could be produced during local respiratory or digestive tract infections.


Asunto(s)
Glomerulonefritis por IGA , Femenino , Galactosa , Humanos , Inmunoglobulina A/metabolismo , Inmunoglobulina G , Inmunoglobulina M , Masculino
5.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38069228

RESUMEN

Lyme disease (LD) spirochetes are well known to be able to disseminate into the tissues of infected hosts, including humans. The diverse strategies used by spirochetes to avoid the host immune system and persist in the host include active immune suppression, induction of immune tolerance, phase and antigenic variation, intracellular seclusion, changing of morphological and physiological state in varying environments, formation of biofilms and persistent forms, and, importantly, incursion into immune-privileged sites such as the brain. Invasion of immune-privileged sites allows the spirochetes to not only escape from the host immune system but can also reduce the efficacy of antibiotic therapy. Here we present a case of the detection of spirochetal DNA in multiple loci in a LD patient's post-mortem brain. The presence of co-infection with Borrelia burgdorferi sensu stricto and Borrelia garinii in this LD patient's brain was confirmed by PCR. Even though both spirochete species were simultaneously present in human brain tissue, the brain regions where the two species were detected were different and non-overlapping. The presence of atypical spirochete morphology was noted by immunohistochemistry of the brain samples. Atypical morphology was also found in the tissues of experimentally infected mice, which were used as a control.


Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Borrelia , Enfermedad de Lyme , Humanos , Borrelia/genética , Borrelia burgdorferi/genética , Grupo Borrelia Burgdorferi/genética , Encéfalo
6.
Glycobiology ; 31(5): 540-556, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33295603

RESUMEN

Mucin-type O-glycosylation occurs on many proteins that transit the Golgi apparatus. These glycans impact structure and function of many proteins and have important roles in cellular biosynthetic processes, signaling and differentiation. Although recent technological advances have enhanced our ability to profile glycosylation of glycoproteins, limitations in the understanding of the biosynthesis of these glycan structures remain. Some of these limitations stem from the difficulty to track the biosynthetic process of mucin-type O-glycosylation, especially when glycans occur in dense clusters in repeat regions of proteins, such as the mucins or immunoglobulin A1 (IgA1). Here, we describe a series of nano-liquid chromatography (LC)-mass spectrometry (MS) analyses that demonstrate the range of glycosyltransferase enzymatic activities involved in the biosynthesis of clustered O-glycans on IgA1. By utilizing nano-LC-MS relative quantitation of in vitro reaction products, our results provide unique insights into the biosynthesis of clustered IgA1 O-glycans. We have developed a workflow to determine glycoform-specific apparent rates of a human UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltrasnfersase (GalNAc-T EC 2.4.1.41) and demonstrated how pre-existing glycans affect subsequent activity of glycosyltransferases, such as core 1 galactosyltransferase and α2,3- and α2,6-specific sialyltransferases, in successive additions in the biosynthesis of clustered O-glycans. In the context of IgA1, these results have potential to provide insight into the molecular mechanisms implicated in the pathogenesis of IgA nephropathy, an autoimmune renal disease involving aberrant IgA1 O-glycosylation. In a broader sense, these methods and workflows are applicable to the studies of the concerted and competing functions of other glycosyltransferases that initiate and extend mucin-type core 1 clustered O-glycosylation.


Asunto(s)
Glicosiltransferasas/metabolismo , Inmunoglobulina A/metabolismo , Polisacáridos/biosíntesis , Glicosilación , Humanos , Polisacáridos/análisis
7.
Virol J ; 18(1): 95, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947425

RESUMEN

The early identification of asymptomatic yet infectious cases is vital to curb the 2019 coronavirus (COVID-19) pandemic and to control the disease in the post-pandemic era. In this paper, we propose a fast, inexpensive and high-throughput approach using painless nasal-swab self-collection followed by direct RT-qPCR for the sensitive PCR detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This approach was validated in a large prospective cohort study of 1038 subjects, analysed simultaneously using (1) nasopharyngeal swabs obtained with the assistance of healthcare personnel and analysed by classic two-step RT-qPCR on RNA isolates and (2) nasal swabs obtained by self-collection and analysed with direct RT-qPCR. Of these subjects, 28.6% tested positive for SARS-CoV-2 using nasopharyngeal swab sampling. Our direct RT-qPCR approach for self-collected nasal swabs performed well with results similar to those of the two-step RT-qPCR on RNA isolates, achieving 0.99 positive and 0.98 negative predictive values (cycle threshold [Ct] < 37). Our research also reports on grey-zone viraemia, including samples with near-cut-off Ct values (Ct ≥ 37). In all investigated subjects (n = 20) with grey-zone viraemia, the ultra-small viral load disappeared within hours or days with no symptoms. Overall, this study underscores the importance of painless nasal-swab self-collection and direct RT-qPCR for mass testing during the SARS-CoV-2 pandemic and in the post-pandemic era.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , COVID-19/prevención & control , Tamizaje Masivo/métodos , Autoexamen/métodos , Técnicas de Laboratorio Clínico/métodos , Pruebas Diagnósticas de Rutina/métodos , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , Sensibilidad y Especificidad , Manejo de Especímenes/métodos , Encuestas y Cuestionarios , Carga Viral/métodos
8.
Protein Expr Purif ; 184: 105891, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33895263

RESUMEN

Immunoglobulin A (IgA) proteinase from Clostridium ramosum is the enzyme which cleaves IgA of both subclasses; in contrast, the other bacterial proteinases cleave only IgA1 proteins. Previous reports characterized the activity of proteinase naturally secreted by C. ramosum specific for the normal human serum IgA of IgA1 and IgA2m(1) subclasses and also for secretory IgA (SIgA). Its amino acid sequence was determined, and the recombinant proteinase which cleaved IgA of both subclasses was prepared. Here we report the optimized expression, purification, storage conditions and activity testing against purified human milk SIgA. The recombinant C. ramosum IgA proteinase isolated in the high degree of purity exhibited almost complete cleavage of SIgA of both subclasses. The proteinase remained active upon storage for more than 10 month at -20 °C without substantial loss of enzymatic activity. Purified SIgA fragments are suitable for studies of all antigen-binding and Fc-dependent functions of SIgA involved in the protection against infections with mucosal pathogens.


Asunto(s)
Proteínas Bacterianas/química , Firmicutes/enzimología , Inmunoglobulina A Secretora/química , Fragmentos Fab de Inmunoglobulinas , Fragmentos Fc de Inmunoglobulinas , Péptido Hidrolasas/química , Proteínas Bacterianas/genética , Firmicutes/genética , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/aislamiento & purificación , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/aislamiento & purificación , Péptido Hidrolasas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
9.
Anal Bioanal Chem ; 413(14): 3749-3761, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33837800

RESUMEN

Porcine circovirus causes the post-weaning multi-systemic wasting syndrome. Despite the existence of commercial vaccines, the development of more effective and cheaper vaccines is expected. The usage of chimeric antigens allows serological differentiation between naturally infected and vaccinated animals. In this work, recombinant pentameric vaccination protein particles spontaneously assembled from identical subunits-chimeric fusion proteins derived from circovirus capsid antigen Cap and a multimerizing subunit of mouse polyomavirus capsid protein VP1 were purified and characterized using asymmetric flow field-flow fractionation (AF4) coupled with UV and MALS/DLS (multi-angle light scattering/dynamic light scattering) detectors. Various elution profiles were tested, including constant cross-flow and decreasing cross-flow (linearly and exponentially). The optimal sample retention, separation efficiency, and resolution were assessed by the comparison of the hydrodynamic radius (Rh) measured by online DLS with the Rh values calculated from the simplified retention equation according to the AF4 theory. The results show that the use of the combined elution profiles (exponential and constant cross-flow rates) reduces the time of the separation, prevents undesirable sample-membrane interaction, and yields better resolution. Besides, the results show no self-associations of the individual pentameric particles into larger clusters and no sample degradation during the AF4 separation. The Rg/Rh ratios for different fractions are in good correlation with morphological analyses performed by transmission electron microscopy (TEM). Additionally to the online analysis, the individual fractions were subjected to offline analysis, including batch DLS, TEM, and SDS-PAGE, followed by Western blot.


Asunto(s)
Circovirus/química , Fraccionamiento de Campo-Flujo/instrumentación , Theilovirus/química , Proteínas Virales/aislamiento & purificación , Animales , Línea Celular , Fraccionamiento de Campo-Flujo/métodos , Ratones , Multimerización de Proteína , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Virales/análisis
10.
J Virol ; 93(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30305355

RESUMEN

The HIV-1 envelope (Env) glycans shield the surface of Env from the immune system and form integral interactions important for a functional Env. To understand how individual N-glycosylation sites (NGS) coordinate to form a dynamic shield and evade the immune system through mutations, we tracked 20 NGS in Env from HIV-transmitted/founder (T/F) and immune escape variants and their mutants involving the N262 glycan. NGS were profiled in a site-specific manner using a high-resolution mass spectrometry (MS)-based workflow. Using this site-specific quantitative heterogeneity profiling, we empirically characterized the interdependent NGS of a microdomain in the high-mannose patch (HMP). The changes (shifts) in NGS heterogeneity between the T/F and immune escape variants defined a range of NGS that we further probed for exclusive combinations of sequons in the HMP microdomain using the Los Alamos National Laboratory HIV sequence database. The resultant sequon combinations, including the highly conserved NGS N262, N448, and N301, created an immune escape map of the conserved and variable sequons in the HMP microdomain. This report provides details on how some clustered NGS form microdomains that can be identified and tracked across Env variants. These microdomains have a limited number of N-glycan-sequon combinations that may allow the anticipation of immune escape variants.IMPORTANCE The Env protein of HIV is highly glycosylated, and the sites of glycosylation can change as the virus mutates during immune evasion. Due to these changes, the glycan location and heterogeneity of surrounding N-glycosylation sites can be altered, resulting in exposure of different glycan or proteoglycan surfaces while still producing a viable HIV variant. These changes present a need for vaccine developers to identify Env variants with epitopes most likely to induce durable protective responses. Here we describe a means of anticipating HIV-1 immune evasion by dividing Env into N-glycan microdomains that have a limited number of N-glycan sequon combinations.


Asunto(s)
VIH-1/metabolismo , Mutación , Polisacáridos/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Sitios de Unión , Glicosilación , Células HEK293 , VIH-1/química , VIH-1/genética , Células HeLa , Humanos , Evasión Inmune , Espectrometría de Masas , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
11.
Glycobiology ; 29(7): 543-556, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30759204

RESUMEN

GalNAc-type O-glycans are often added to proteins post-translationally in a clustered manner in repeat regions of proteins, such as mucins and IgA1. Observed IgA1 glycosylation patterns show that glycans occur at similar sites with similar structures. It is not clear how the sites and number of glycans added to IgA1, or other proteins, can follow a conservative process. GalNAc-transferases initiate GalNAc-type glycosylation. In IgA nephropathy, an autoimmune disease, the sites and O-glycan structures of IgA1 hinge-region are altered, giving rise to a glycan autoantigen. To better understand how GalNAc-transferases determine sites and densities of clustered O-glycans, we used IgA1 hinge-region (HR) segment as a probe. Using LC-MS, we demonstrated a semi-ordered process of glycosylation by GalNAc-T2 towards the IgA1 HR. The catalytic domain was responsible for selection of four initial sites based on amino-acid sequence recognition. Both catalytic and lectin domains were involved in multiple second site-selections, each dependent on initial site-selection. Our data demonstrated that multiple start-sites and follow-up pathways were key to increasing the number of glycans added. The lectin domain predominately enhanced IgA1 HR glycan density by increasing synthesis pathway exploration by GalNAc-T2. Our data indicated a link between site-specific glycan addition and clustered glycan density that defines a mechanism of how conserved clustered O-glycosylation patterns and glycoform populations of IgA1 can be controlled by GalNAc-T2. Together, these findings characterized a correlation between glycosylation pathway diversity and glycosylation density, revealing mechanisms by which a single GalNAc-T isozyme can limit and define glycan heterogeneity in a disease-relevant context.


Asunto(s)
Inmunoglobulina A/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , Polisacáridos/biosíntesis , Biocatálisis , Glicosilación , Humanos , Polisacáridos/química , Polipéptido N-Acetilgalactosaminiltransferasa
12.
Mol Pharm ; 16(8): 3441-3451, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31184896

RESUMEN

Nanodiamonds (ND), especially fluorescent NDs, represent potentially applicable drug and probe carriers for in vitro/in vivo applications. The main purpose of this study was to relate physical-chemical properties of carboxylated NDs to their intracellular distribution and impact on membranes and cell immunity-activation of inflammasome in the in vitro THP-1 cell line model. Dynamic light scattering, nanoparticle tracking analysis, and microscopic methods were used to characterize ND particles and their intracellular distribution. Fluorescent NDs penetrated the cell membranes by both macropinocytosis and mechanical cutting through cell membranes. We proved accumulation of fluorescent NDs in lysosomes. In this case, lysosomes were destabilized and cathepsin B was released into the cytoplasm and triggered pathways leading to activation of inflammasome NLRP3, as detected in THP-1 cells. Activation of inflammasome by NDs represents an important event that could underlie the described toxicological effects in vivo induced by NDs. According to our knowledge, this is the first in vitro study demonstrating direct activation of inflammasome by NDs. These findings are important for understanding the mechanism(s) of action of ND complexes and explain the ambiguity of the existing toxicological data.


Asunto(s)
Inflamasomas/efectos de los fármacos , Microscopía Intravital/métodos , Lisosomas/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nanodiamantes/administración & dosificación , Catepsina B/inmunología , Catepsina B/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Dispersión Dinámica de Luz , Fluorescencia , Humanos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Lisosomas/inmunología , Lisosomas/metabolismo , Lisosomas/ultraestructura , Microscopía de Fuerza Atómica , Microscopía Confocal , Microscopía Electrónica , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Nanodiamantes/química , Pinocitosis , Células THP-1
13.
Bioconjug Chem ; 29(7): 2343-2356, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29898364

RESUMEN

New synthetic aminoxy lipids are designed and synthesized as building blocks for the formulation of functionalized nanoliposomes by microfluidization using a NanoAssemblr. Orthogonal binding of hyaluronic acid onto the outer surface of functionalized nanoliposomes via aminoxy coupling ( N-oxy ligation) is achieved at hemiacetal function of hyaluronic acid and the structure of hyaluronic acid-liposomes is visualized by transmission electron microscopy and cryotransmission electron microscopy. Observed structures are in a good correlation with data obtained by dynamic light scattering (size and ζ-potential). In vitro experiments on cell lines expressing CD44 receptors demonstrate selective internalization of fluorochrome-labeled hyaluronic acid-liposomes, while cells with down regulated CD44 receptor levels exhibit very low internalization of hyaluronic acid-liposomes. A method based on microfluidization mixing was developed for preparation of monodispersive unilamellar liposomes containing aminoxy lipids and orthogonal binding of hyaluronic acid onto the liposomal surface was demonstrated. These hyaluronic acid-liposomes represent a potentially new drug delivery platform for CD44-targeted anticancer drugs as well as for immunotherapeutics and vaccines.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/química , Lípidos/síntesis química , Liposomas/química , Línea Celular , Endocitosis , Colorantes Fluorescentes , Humanos , Receptores de Hialuranos/análisis , Ácido Hialurónico/metabolismo , Liposomas/uso terapéutico , Microfluídica , Microscopía Electrónica de Transmisión , Neoplasias/tratamiento farmacológico
14.
Kidney Blood Press Res ; 43(2): 350-359, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29529610

RESUMEN

BACKGROUND/AIMS: IgA nephropathy is associated with aberrant O-glycosylation of IgA1, which is recognized by autoantibodies leading to the formation of circulating immune complexes. Some of them, after deposition into kidney mesangium, trigger glomerular injury. In patients with active disease nonresponding to angiotensin-converting enzyme inhibitors or angiotensin II blockers, corticosteroids are recommended. METHODS: The relationship between the corticosteroid therapy and serum levels of IgA, aberrantly O-glycosylated IgA1, IgA-containing immune complexes and their mesangioproliferative activity was analyzed in IgA nephropathy patients and disease and healthy controls. RESULTS: Prednisone therapy significantly reduced proteinuria and levels of serum IgA, galactose-deficient IgA1, and IgA-IgG immune complexes in IgA nephropathy patients and thus reduced differences in all of the above parameters between IgAN patients and control groups. A moderate but not significant reduction of mesangioproliferative potential of IgA-IgG immune complexes and IgA sialylation was detected. CONCLUSION: The prednisone therapy reduces overall aberrancy in IgA1 O-glycosylation in IgA nephropathy patients, but the measurement of IgA1 parameters does not allow us to predict the prednisone therapy outcome in individual patients.


Asunto(s)
Glomerulonefritis por IGA/tratamiento farmacológico , Glucocorticoides/farmacología , Glicosilación/efectos de los fármacos , Inmunoglobulina A/metabolismo , Anticuerpos/sangre , Complejo Antígeno-Anticuerpo/sangre , Estudios de Casos y Controles , Glomerulonefritis por IGA/diagnóstico , Glucocorticoides/uso terapéutico , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Prednisona/uso terapéutico , Pronóstico
15.
Microbiol Immunol ; 61(11): 474-481, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28892177

RESUMEN

Lasioglossins are a group of peptides with identified antimicrobial activity. The inhibitory effects of two synthetic lasioglossin derivatives, LLIII and D-isomeric variant LLIII-D, on morphological changes in Candida albicans in vitro and the effect of local administration of LLIII during experimental murine candidiasis were investigated. C. albicans blastoconidia were grown in the presence of lasioglossin LLIII or LLIII-D at concentrations of 11.5 µM and 21 µM, respectively, for 1, 2 and 3 days and their viability determined by flow cytometry using eosin Y staining. Morphological changes were examined by light and fluorescent microscopy. The Candida-inhibitory effect of daily intravaginal administration of 0.7 or 1.4 µg of LLIII was assessed in mice with experimentally-induced vaginal candidiasis. LLIII and LLIII-D lasioglossins exhibited candidacidal activity in vitro (>76% after 24 hr and >84% after 48 hr of incubation). After 72 hr incubation of Candida with low concentration of lasioglossins, an increase in viability was detected, probably due to a Candida antimicrobial peptides evasion strategy. Furthermore, lasioglossins inhibited temperature-induced morphotype changes toward hyphae and pseudohyphae with sporadic occurrence of atypical cells with two or enlarged nuclei, suggesting interference with mitosis or cytokinesis. Local application of LLIII reduced the duration of experimental candidiasis with no evidence of adverse effects. Lasioglossin LLIII is a promising candidate for development as an antimicrobial drug for treating the vaginal candidiasis.


Asunto(s)
Antifúngicos/administración & dosificación , Péptidos Catiónicos Antimicrobianos/administración & dosificación , Candida albicans/efectos de los fármacos , Candidiasis Vulvovaginal/tratamiento farmacológico , Administración Intravaginal , Animales , Candida albicans/crecimiento & desarrollo , Candidiasis Vulvovaginal/microbiología , Femenino , Humanos , Ratones , Ratones Endogámicos DBA
16.
J Am Soc Nephrol ; 27(11): 3278-3284, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26966014

RESUMEN

Autoantibodies against galactose-deficient IgA1 drive formation of pathogenic immune complexes in IgA nephropathy. IgG autoantibodies against galactose-deficient IgA1 in patients with IgA nephropathy have a specific amino-acid sequence, Y1CS3, in the complementarity-determining region 3 of the heavy chain variable region compared with a Y1CA3 sequence in similar isotype-matched IgG from healthy controls. We previously found that the S3 residue is critical for binding galactose-deficient IgA1. To determine whether this difference is due to a rare germline sequence, we amplified and sequenced the corresponding germline variable region genes from peripheral blood mononuclear cells of seven patients with IgA nephropathy and six healthy controls from whom we had cloned single-cell lines secreting monoclonal IgG specific for galactose-deficient IgA1. Sanger DNA sequencing revealed that complementarity-determining region 3 in the variable region of the germline genes encoded the Y1C(A/V)3 amino-acid sequence. Thus, the A/V>S substitution in the complementarity-determining region 3 of anti-galactose-deficient-IgA1 autoantibodies of the patients with IgA nephropathy is not a rare germline gene variant. Modeling analyses indicated that the S3 hydroxyl group spans the complementarity-determining region 3 loop stem, stabilizing the adjacent ß-sheet and stem structure, important features for effective binding to galactose-deficient IgA1. Understanding processes leading to production of the autoantibodies may offer new approaches to treat IgA nephropathy.


Asunto(s)
Autoanticuerpos/genética , Galactosa/deficiencia , Glomerulonefritis por IGA/genética , Glomerulonefritis por IGA/inmunología , Inmunoglobulina A , Mutación , Glomerulonefritis por IGA/enzimología , Humanos
17.
Clin Immunol ; 172: 72-77, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27444044

RESUMEN

IgA nephropathy (IgAN) is the leading cause of primary glomerulonephritis in the world. The disease is characterized by the presence of IgA-containing immune complexes in the circulation and in mesangial deposits with ensuing glomerular injury. Although in humans there are two IgA subclasses, only IgA1 molecules are involved. The exclusivity of participation of IgA1 in IgAN prompted extensive structural and immunological studies of the unique hinge region (HR) of IgA1, which is absent in otherwise highly homologous IgA2. HR of IgA1 with altered O-glycans serves as an antigen recognized by autoantibodies specific for aberrant HR glycans leading to the generation of nephritogenic immune complexes. However, there are several unresolved questions concerning the phylogenetic origin of human IgA1 HR, the structural basis of its antigenicity, the origin of antibodies specific for HR with altered glycan moieties, the regulatory defects in IgA1 glycosylation pathways, and the potential approaches applicable to the disease-specific interventions in the formation of nephritogenic immune complexes. This review focuses on the gaps in our knowledge of molecular and cellular events that are involved in the immunopathogenesis of IgAN.


Asunto(s)
Glomerulonefritis por IGA/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Inmunoglobulina A/inmunología
19.
Vnitr Lek ; 62 Suppl 6: 67-77, 2016.
Artículo en Checo | MEDLINE | ID: mdl-28124935

RESUMEN

IgA nephropathy (IgAN) is the most common type of glomerulonephritis. Its etiology involves an increased production of polymeric immunoglobulin A1 with an abnormal composition of some carbohydrate chains. The reaction of these abnormal forms of IgA1 with specific autoantibodies while circulating immune complexes arise and settle in the renal mesangium with subsequent inflammatory activation of mesangial cells which in up to 50% of cases results in end-stage kidney failure. Pathogenesis involves an interplay of genetic predisposition and environmental effects, mainly of microbial nature. Current therapy is not sufficiently effective and lacks the focus on the cause of the disease, therefore more efficient and specific ways of therapy are being sought to target the individual stages of the pathogenetic process of IgAN development. With the accumulation of knowledge, new questions arise, concerning detailed mechanisms of the pathological processes, as discussed in the text.Key words: autoimmunity - glycosylation of IgA hinge region - IgA nephropathy - immunoglobulin IgA - IgA1 hinge region.


Asunto(s)
Mesangio Glomerular/fisiopatología , Glomerulonefritis por IGA , Fallo Renal Crónico , Glomerulonefritis por IGA/etiología , Glomerulonefritis por IGA/terapia , Glicosilación , Humanos , Inmunoglobulina A , Riñón
20.
J Biol Chem ; 289(8): 5330-9, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24398680

RESUMEN

IgA nephropathy (IgAN), the most common primary glomerulonephritis, is characterized by renal immunodeposits containing IgA1 with galactose-deficient O-glycans (Gd-IgA1). These immunodeposits originate from circulating immune complexes consisting of anti-glycan antibodies bound to Gd-IgA1. As clinical disease onset and activity of IgAN often coincide with mucosal infections and dysregulation of cytokines, we hypothesized that cytokines may affect IgA1 O-glycosylation. We used IgA1-secreting cells derived from the circulation of IgAN patients and healthy controls and assessed whether IgA1 O-glycosylation is altered by cytokines. Of the eight cytokines tested, only IL-6 and, to a lesser degree, IL-4 significantly increased galactose deficiency of IgA1; changes in IgA1 O-glycosylation were robust for the cells from IgAN patients. These cytokines reduced galactosylation of the O-glycan substrate directly via decreased expression of the galactosyltransferase C1GalT1 and, indirectly, via increased expression of the sialyltransferase ST6GalNAc-II, which prevents galactosylation by C1GalT1. These findings were confirmed by siRNA knockdown of the corresponding genes and by in vitro enzyme reactions. In summary, IL-6 and IL-4 accentuated galactose deficiency of IgA1 via coordinated modulation of key glycosyltransferases. These data provide a mechanism explaining increased immune-complex formation and disease exacerbation during mucosal infections in IgAN patients.


Asunto(s)
Citocinas/farmacología , Galactosiltransferasas/metabolismo , Inmunoglobulina A/metabolismo , Sialiltransferasas/metabolismo , Adulto , Línea Celular , Femenino , Galactosa/deficiencia , Galactosa/metabolismo , Técnicas de Silenciamiento del Gen , Glomerulonefritis por IGA/enzimología , Glomerulonefritis por IGA/patología , Glicosilación/efectos de los fármacos , Humanos , Interleucina-4/farmacología , Interleucina-6/farmacología , Masculino , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/metabolismo , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA