Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Cell Sci ; 131(17)2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30072442

RESUMEN

The mitotic spindle is a very dynamic structure that is built de novo and destroyed at each round of cell division. In order to perform its fundamental function during chromosome segregation, mitotic spindle dynamics must be tightly coordinated with other cell cycle events. These changes are driven by several protein kinases, phosphatases and microtubule-associated proteins. In budding yeast, the kinase Swe1 and the phosphatase Mih1 act in concert in controlling the phosphorylation state of Cdc28, the catalytic subunit of Cdk1, the major regulator of the cell cycle. In this study we show that Swe1 and Mih1 are also involved in the control of mitotic spindle dynamics. Our data indicate that Swe1 and the Polo-like kinase Cdc5 control the balance between phosphorylated and unphosphorylated forms of Mih1, which is, in turn, important for mitotic spindle elongation. Moreover, we show that the microtubule-associated protein Bik1 is a phosphoprotein, and that Swe1 and Mih1 are both involved in controlling phosphorylation of Bik1. These results uncover new players and provide insights into the complex regulation of mitotic spindle dynamics.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Mitosis , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , ras-GRF1/metabolismo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Huso Acromático/genética , ras-GRF1/genética
2.
Curr Genet ; 65(4): 851-855, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30788566

RESUMEN

Saccharomyces cerevisiae has been widely used as a model system for the study of basic biological processes which are usually evolutionarily conserved from yeasts to multicellular eukaryotes. These studies are very important because they shed light on mechanisms that are altered in human diseases and help the development of new biomarkers and therapies. The mitotic spindle is a conserved apparatus that governs chromosome segregation during mitosis. Given its crucial role for genome stability and, therefore, for cell viability, its structure and function are strictly regulated. Recent findings reveal new levels of regulation in mitotic spindle dynamics and link spindle pole diversification with cell fate determination, health, disease and aging.


Asunto(s)
Envejecimiento/genética , Mitosis/genética , Huso Acromático/genética , Polos del Huso/genética , Envejecimiento/metabolismo , Biomarcadores/metabolismo , Segregación Cromosómica/genética , Humanos , Huso Acromático/metabolismo
3.
Genesis ; 55(1-2)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28095613

RESUMEN

Faithful DNA replication, coupled with accurate repair of DNA damage, is essential to maintain genome stability and relies on different DNA metabolism genes. Many of these genes are involved in the assembly of replication origins, in the coordination of DNA repair to protect replication forks progression in the presence of DNA damage and in the replication of repetitive chromatin regions. Some DNA metabolism genes are essential in higher eukaryotes, suggesting the existence of specialized mechanisms of repair and replication in organisms with complex genomes. The impact on cell survival of many of these genes has so far precluded in depth molecular analysis of their function. The cell-free Xenopus laevis egg extract represents an ideal system to overcome survival issues and to facilitate the biochemical study of replication-associated functions of essential proteins in vertebrate organisms. Here, we will discuss how Xenopus egg extracts have been used to study cellular and molecular processes, such as DNA replication and DNA repair. In particular, we will focus on innovative imaging and proteomic-based experimental approaches to characterize the molecular function of a number of essential DNA metabolism factors involved in the duplication of complex vertebrate genomes.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , Oocitos/metabolismo , Animales , Núcleo Celular/genética , Sistema Libre de Células , Cromatina/genética , Proteínas de Unión al ADN , Genoma , Oocitos/crecimiento & desarrollo , Xenopus/genética , Xenopus/crecimiento & desarrollo
4.
J Biol Chem ; 290(1): 1-12, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25406317

RESUMEN

Cyclin-dependent kinase (Cdk1) activity is required for mitotic entry, and this event is restrained by an inhibitory phosphorylation of the catalytic subunit Cdc28 on a conserved tyrosine (Tyr(19)). This modification is brought about by the protein kinase Swe1 that inhibits Cdk1 activation thus blocking mitotic entry. Swe1 levels are regulated during the cell cycle, and they decrease during G2/M concomitantly to Cdk1 activation, which drives entry into mitosis. However, after mitotic entry, a pool of Swe1 persists, and we collected evidence that it is involved in controlling mitotic spindle elongation. We also describe that the protein phosphatase Cdc14 is implicated in Swe1 regulation; in fact, we observed that Swe1 dephosphorylation in vivo depends on Cdc14 that, in turn, is able to control its subcellular localization. In addition we show that the lack of Swe1 causes premature mitotic spindle elongation and that high levels of Swe1 block mitotic spindle elongation, indicating that Swe1 inhibits this process. Importantly, these effects are not dependent upon the role of in Cdk1 inhibition. These data fit into a model in which Cdc14 binds and inhibits Swe1 to allow timely mitotic spindle elongation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Regulación Fúngica de la Expresión Génica , Mitosis , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Huso Acromático/genética , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Fosforilación , Unión Proteica , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Imagen de Lapso de Tiempo
6.
Nat Commun ; 11(1): 1345, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32165637

RESUMEN

In several metazoans, the number of active replication origins in embryonic nuclei is higher than in somatic ones, ensuring rapid genome duplication during synchronous embryonic cell divisions. High replication origin density can be restored by somatic nuclear reprogramming. However, mechanisms underlying high replication origin density formation coupled to rapid cell cycles are poorly understood. Here, using Xenopus laevis, we show that SSRP1 stimulates replication origin assembly on somatic chromatin by promoting eviction of histone H1 through its N-terminal domain. Histone H1 removal derepresses ORC and MCM chromatin binding, allowing efficient replication origin assembly. SSRP1 protein decays at mid-blastula transition (MBT) when asynchronous somatic cell cycles start. Increasing levels of SSRP1 delay MBT and, surprisingly, accelerate post-MBT cell cycle speed and embryo development. These findings identify a major epigenetic mechanism regulating DNA replication and directly linking replication origin assembly, cell cycle duration and embryo development in vertebrates.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Animales , Blástula/embriología , Blástula/metabolismo , Cromatina/genética , Cromatina/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad , Histonas/química , Histonas/genética , Dominios Proteicos , Origen de Réplica , Proteínas de Xenopus/genética , Xenopus laevis/embriología
7.
Cell Cycle ; 13(10): 1590-601, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24646733

RESUMEN

In budding yeast, septins are assembled into structures that undergo dramatic changes during the cell cycle. The molecular mechanisms that drive these remodelings are not fully uncovered. In this study, we describe a characterization of Vhs2, a nonessential protein that revealed to be a new player in septin dynamics. In particular, we report that Vhs2 is important to maintain the stability of the double septin ring structure until telophase. In addition, we show that Vhs2 undergoes multiple phosphorylations during the cell cycle, being phosphorylated during S phase until nuclear division and dephosphorylated just before cell division. Importantly we report that cyclin-dependent protein kinase Cdk1 and protein phosphatase Cdc14 control these Vhs2 post-translational modifications. These results reveal that Vhs2 is a novel Cdc14 substrate that is involved in the control of septin organization.


Asunto(s)
Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo , Proteína Quinasa CDC2/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo , Telofase
8.
Cell Cycle ; 12(17): 2794-808, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23966170

RESUMEN

Cytokinesis completion in the budding yeast S. cerevisiae is driven by tightly regulated pathways, leading to actomyosin ring contraction coupled to plasma membrane constriction and to centripetal growth of the primary septum, respectively. These pathways can partially substitute for each other, but their concomitant inactivation leads to cytokinesis block and cell death. Here we show that both the lack of the functionally redundant FHA-RING ubiquitin ligases Dma1 and Dma2 and moderate Dma2 overproduction affect actomyosin ring contraction as well as primary septum deposition, although they do not apparently alter cell cycle progression of otherwise wild-type cells. In addition, overproduction of Dma2 impairs the interaction between Tem1 and Iqg1, which is thought to be required for AMR contraction, and causes asymmetric primary septum deposition as well as mislocalization of the Cyk3-positive regulator of this process. In agreement with these multiple inhibitory effects, a Dma2 excess that does not cause any apparent defect in wild-type cells leads to lethal cytokinesis block in cells lacking the Hof1 protein, which is essential for primary septum formation in the absence of Cyk3. Altogether, these findings suggest that the Dma proteins act as negative regulators of cytokinesis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Citocinesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Actomiosina/metabolismo , Modelos Biológicos , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/ultraestructura , Ubiquitinación
9.
Mol Biol Cell ; 22(13): 2185-97, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21562220

RESUMEN

Timely down-regulation of the evolutionarily conserved protein kinase Swe1 plays an important role in cell cycle control, as Swe1 can block nuclear division through inhibitory phosphorylation of the catalytic subunit of cyclin-dependent kinase. In particular, Swe1 degradation is important for budding yeast cell survival in case of DNA replication stress, whereas it is inhibited by the morphogenesis checkpoint in response to alterations in actin cytoskeleton or septin structure. We show that the lack of the Dma1 and Dma2 ubiquitin ligases, which moderately affects Swe1 localization and degradation during an unperturbed cell cycle with no apparent phenotypic effects, is toxic for cells that are partially defective in Swe1 down-regulation. Moreover, Swe1 is stabilized, restrained at the bud neck, and hyperphosphorylated in dma1Δ dma2Δ cells subjected to DNA replication stress, indicating that the mechanism stabilizing Swe1 under these conditions is different from the one triggered by the morphogenesis checkpoint. Finally, the Dma proteins are required for proper Swe1 ubiquitylation. Taken together, the data highlight a previously unknown role of these proteins in the complex regulation of Swe1 and suggest that they might contribute to control, directly or indirectly, Swe1 ubiquitylation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Actinas/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Quinasas Ciclina-Dependientes/metabolismo , Replicación del ADN/genética , Regulación hacia Abajo/genética , Fosforilación/efectos de los fármacos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Septinas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA